emcoair Luftdurchlässe

Schnellauswahlkatalog 2019/2020

Herzlich Willkommen!

Entdecken Sie unser breites Spektrum von Luftdurchlässen. Bei emcoair haben Sie die Wahl – entweder ganz smart und dezent integriert oder prominent als Gestaltungselement. Die Möglichkeiten sind vielfältig!

emcoair Luftdurchlässe

Die Kampmann Philosophie
Grundlagen und Systemvorteile
Drallluftdurchlässe
Deckenluftdurchlässe
Schlitzluftdurchlässe
Rundrohrluftdurchlässe/Ovalrohrluftdurchlässe
Quellluftdurchlässe
Industrieluftdurchlässe
Weitwurfdüsen
Kombiluftdurchlässe
Bodenluftdurchlässe
Gitter
Klappen und Regler
Allgemeine Geschäftsbedingungen, Kontakt

Genau mein Klima.

Drei einfache Worte:
Drei Worte für
drei Unternehmen.

Unter dem Dach der Kampmann GmbH vereint, bieten die drei Marken Kampmann, NOVA und emco Klima eine einzigartige Lösungskompetenz und Produktbandbreite für Klimasysteme in Gebäuden aller Art. Führend in vielen Marktbereichen und von hoher Innovationskraft, geht es bei Kampmann am Ende um eins: Genau mein Klima. Die drei Worte manifestieren unser Selbstverständnis und somit auch unser Versprechen an Sie.

Genau

Klar – Kampmann schafft nicht irgendein Klima, sondern genau das richtige. Aber auch: Kampmann ist bei seiner Arbeit stets präzise und pünktlich.

Mein

Individuell und persönlich – jeder Kunde, jedes Projekt ist einzigartig. Und das berücksichtigen wir bei unserer Arbeit. Jeden Tag aufs Neue.

Klima

Wohlfühlklima – das wollen wir nicht nur mittels Luftqualität und Temperatur schaffen, sondern auch durch ein gutes Miteinander.

So transportieren vierzehn Buchstaben unser ganzes Selbstverständnis. Dazu gehört auch, dass wir unsere Kunden bestmöglich unterstützen: Bei der Planung, der Montage und auch noch nach Projektabschluss. Wie das genau aussieht, erfahren Sie auf der nächsten Seite!

Kampmann.de

- T +49 591 7108-0
- +49 591 7108-300
- E info@kampmann.de

Unterstützung

von TGA bis Z.

Nähe

Immer für Sie da – persönlich.
Ganz gleich, wo Sie sich befinden, ein Mitarbeiter ist immer in Ihrer Nähe. Ein dichtes Netz von Außendienstmitarbeitern, Niederlassungen in ganz
Europa, sowie Gesellschaften in Großbritannien und Kanada – Kampmann-Unternehmen agieren weltweit nahe am Kunden.

Planungsunterstützung

Beste Lösungen, beste Unterstützung – wir bieten eine Vielzahl von Tools zur Planungsunterstützung: Smarte Apps und Berechnungsprogramme, BIMDaten und CAD-Zeichnungen und nicht zuletzt frisches Fachwissen in unseren zertifizierten Seminaren vom Kampmann Kampus – echte Mehrwerte für die TGA-Branche.

Montage und Service

Die fachgerechte Montage und Inbetriebnahme von Klima-Systemen ist unerlässlich für einen effizienten Betrieb bei langer Lebensdauer. 13 Kampmann-Spezialisten und 130 geschulte Vertragstechniker sind im Einsatz, nehmen Aufmaß, weisen ein, reparieren und warten. Weltweit.

After-Sales-Serviceleistungen

Sicherheit und Service auch nach Projektabschluss: Kampmann verfügt über ein umfassendes Ersatzteillager. Fast alle Ersatzteile sind für mindestens zehn Jahre verfügbar. Über den Ersatzteilshop lassen sich etwa Filter, Regelungszubehör oder Wärmetauscher besonders unkompliziert ordern.

Grundlagen und Systemvorteile.

1972 startete emco Klima, der damaligen Zeit entsprechend, mit einer Reihe solider Luftauslässe. Gezielte Entwicklungen für unterschiedliche Luftführungssysteme und Flexibilität bei individuellen Problemlösungen und deren termingerechter Lieferung schafften Vertrauen bei den Fachpartnern von emco Klima.

Heute bietet emco Klima neben einem umfangreichen Produkt-Programm luft- und wasserführender Systeme auch Servicedienste wie Berechnungen mit eigenen Computerprogrammen und Labortests. Funktionssicherheit und Wirtschaftlichkeit erhalten damit bereits während der Planung die Basis für ein optimales Klima.

Inhalt

Allgemeines	6
Symbolverzeichnis und Grundbegriffe	8
Akustische Grundlagen	10
Ermittlung des Schalldruckpegels im Raum	12

Symbolverzeichnis und Grundbegriffe

Symbol	Bezeichnung	Einheit
Α	Fläche	m²
A _{eff}	geometrisch freier Strömungsquerschnitt	m² bzw. m²/m
В	Breite	mm
С	Induktions-Korrekturfaktor bei verändertem Gitteröffnungswinke	-
D, d	Durchmesser	mm, m
D _{min}	Abstand der Gitter, bzw. der Gitter von der Decke	m
F	Kraft	N
f	Korrekturfaktor für vertikale Strahlgeschwindigkeit	-
f _m	Mittenfrequenz	Hz
g	Erdbeschleunigung	ms ⁻²
H, h	Höhe	mm, m
i	Induktionsverhältnis	-
К	Korrekturfaktor für v _{eff} bei geänder- tem Lamellenanstellwinkel β	-
k	Rauheitshöhe	mm
L, I	Länge (des Raumes), Lauflänge des Strahles	mm, m
L _w	Schallleistungspegel	dB
L _{wa}	A-bewerteter Schallleistungspegel	dB (A)
L _P	Schalldruckpegel	dB
L _{PA}	A-bewerteter Schalldruckpegel	dB (A)
ΔL	Raumdämpfungs- bzw. Absorptionsmaß	dB
ΔL _{Okt} .	Schallleistungspegel pro Okt.	dB/Okt.
m	Masse	kg
ṁ	Massenstrom	kg s ⁻¹
n	Anzahl	-
Р	Schallleistung	W
р	Schalldruck, Druck	Pa
P_d	dynamischer Druck	Pa
P _O	äußerer Druck (Luftdruck)	Pa
p _{st}	statischer Druck	Pa
pt	Gesamtdruck	Pa
Δ_{p}	Druckunterschied	Pa
$\Delta p_{\scriptscriptstyle R}$	Druckabfall durch Reibung	Pa
$\Delta p_{\rm t}$	Gesamtdruckdifferenz	Pa
R, r	Radius	mm, m

Symbol	Bezeichnung	Einheit
Т	thermodynamische Temperatur	K
T _R	thermodynamische Temperatur des Raumes	K
T _{ab}	thermodynamische Temperatur der Abluft	K
T _{zu}	thermodynamische Temperatur der Zuluft	K
t	Zeit	S
t _o , t _R	Zuluft- /Raumlufttemperatur	°C
t _{x max}	maximale Temperatur im Strahlquer- schnitt nach dem Strahlweg x	°C
ΔT_{o} , Δt_{o}	Temperaturdifferenz zwischen Zu- und Raumluft	K
ΔT_{xy}	Temperaturdifferenz zwischen Strahl- und Raumluft nach Lauflänge x bzw. x+y	K
Δt _{x max}	Differenz zwischen der max. Temperatur im Strahl und der Raumtemperatur	К
V, V _{geo}	Raumvolumen	m³
V	Volumenstrom	m³ h-1
V _x	Gesamtvolumenstrom an der Koordinate x	m³ h-1
v _o	Zuluftvolumenstrom	m³ h-1 bzw. m³ (hm)-1
v	Geschwindigkeit	ms ⁻¹
V _{eff}	effektive Ausblasgeschwindigkeit am Gitteraustritt	ms ⁻¹
ν β	effektive Ausblasgeschwindigkeit am Gitteraustritt bei Lamellenanstellwin- kel β	ms ⁻¹
V _{max}	maximale mittlere Geschwindigkeit nach dem Strahlweg x bzw. x+y	ms ⁻¹
X, x	Strahllauflänge	mm, m
X _{krit}	kritischer Strahlweg	m
у	vertikale Strahllauflänge nach dem Stoß	m
y _{max}	vertikale Eindringtiefe	m
Y, y	vertikale Ablenkung des nicht isothermen Strahles	m
Y _{0,2} , y _{0,2}	Abstand von der Strahlachse, bei dem die Strahlgeschwindigkeit v=0,2 m/s beträgt	m
α, β, γ, δ	Winkel, Strahlausbreitewinkel	0
ζ	Widerstandszahl	-
λ	Reibungszahl	-
ρ	Dichte	kg m⁻³

Strömungs- und raumlufttechnische Grundlagen

Coanda-Effekt

Als Coanda-Effekt wird die Eigenschaft strömender Medien bezeichnet, sich bei paralleler oder sogar auseinander gehender Strömungsrichtung an ebene Flächen oder andere Strahlen anzulegen bzw. diese anzuziehen.

Kritischer Strahlweg

Besteht zwischen Raumtemperatur und Luftstrahltemperatur eine Differenz, so fällt oder steigt der Luftstrahl zusätzlich zu der durch die Ausbreitung bedingten Höhenänderung, je nachdem, ob seine Temperatur niedriger oder höher als die der Raumluft ist. Wird die Zuluft mit Untertemperatur waagerecht in den Raum eingeblasen, so folgt bei einem Freistrahl die Strahlachse sofort einer nach unten gekrümmten Bahn.

Bei einem Deckenstrahl (Wandstrahl) wird infolge des Coanda-Effektes der Strahl trotz Untertemperatur eine gewisse Strecke an der Decke gehalten, der Strahlabfall setzt erst zu einem späteren Zeitpunkt ein. Dieser Weg vom Luftdurchlass bis zu der Stelle, an der sich der kältere Strahl von der Decke löst, wird als "Kritischer Strahlweg" bezeichnet.

Temperaturverhältnis

Das Temperaturverhältnis ist der Quotient aus der Temperaturdifferenz an der Stelle x und der Temperaturdifferenz am Luftdurchlass.

Das Temperaturverhältnis ist eine dimensionslose Größe. Je kleiner das Temperaturverhältnis nach einer gewissen Strahllauflänge ist, umso schneller werden demzufolge Temperaturdifferenzen abgebaut und umso größer ist die Strahlinduktion.

Induktionsverhältnis

Das Induktionsverhältnis ist der Quotient aus dem an der Stelle x bewegten Gesamtvolumenstrom und dem Zuluftvolumenstrom. Da das Induktionsverhältnis experimentell nicht ermittelt werden kann, wird es indirekt aus dem Temperaturverhältnis berechnet.

Strahlwege x und y

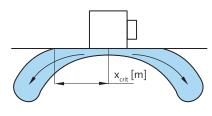
Als Strahlweg x wird bezeichnet:

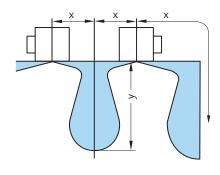
- die Entfernung vom geometrischen Zentrum des Durchlasses bis zum Zusammentreffen mit einem entgegengerichteten Strahl.
- die Lauflänge eines Strahles vom geometrischen Zentrum des Durchlasses entlang einer horizontalen und vertikalen Wand bis zu dem Punkt, für den die strömungstechnischen Parameter ermittelt werden sollen.

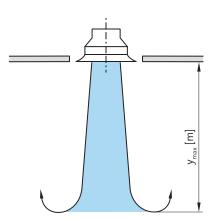
Als Strahlweg y wird bezeichnet:

der vertikale Weg des durch das Aufeinandertreffen zweier gegeneinander gerichteter horizontaler Strahlen entstandenen Vertikalstrahles vom Stoßpunkt bis zu dem Punkt, für den die strömungstechnischen Parameter ermittelt werden sollen.

Die Festlegungen für x und y besitzen auch Gültigkeit, wenn die Durchlässe aufgrund ihrer Geometrie nicht bündig mit der Decke abschließen oder aber abgehängt eingesetzt werden. Dabei ist zu berücksichtigen, dass nach dem Strahlweg (x + y) folgender Zusammenhang zwischen den Geschwindigkeiten mit und ohne Deckeneinfluss gilt:


$$V_{\text{max (mit Decke)}} = 1,4 \times V_{\text{max (ohne Decke)}}$$


bzw.


$$V_{\text{max (ohne Decke)}} = 0,71 \times V_{\text{max (mit Decke)}}$$

Vertikale Eindringtiefe

Unter vertikaler Eindringtiefe y_{max} wird der vertikale Weg eines mit Übertemperatur in den Raum eingebrachten Strahles vom Durchlass bis zu seinem Umkehrpunkt verstanden.

Akustik

Geräuschquellen versetzen die Luft in Schwingungen, bei denen sich diese abwechselnd verdichten und entspannen. Diese Druckveränderungen überlagern den vorhandenen Luftdruck und pflanzen sich sinusförmig in der Luft fort. Gelangen diese Druckschwankungen an unser Ohr, werden die Luftdruckwellen über das Trommelfell in mechanische Schwingungen umgeformt.

Der Hörvorgang ist eingeleitet. Das menschliche Ohr empfindet nur den Luftschall, wobei die folgenden zwei Größen maßgebend sind:

a. der Schalldruck

b. die Frequenz

1. Schalldruck

Der Schalldruck ist die Druckänderung in der Luft, die durch eine Geräuschquelle erzeugt wird. Diese Druckschwankungen werden in N/m² gemessen und mit p bezeichnet. Der Schalldruck stellt ein Maß für die Lautstärke dar. Er ist abhängig von der Entfernung zwischen Schallquelle und Messort sowie der Beschaffenheit des Raumes.

Zur Berechnung der Schallausbreitung auf den Schallfortpflanzungswegen ist der Schalldruck als reine Rechengröße ungeeignet. Hier muss die Schallleistung der Geräuschquelle ermittelt werden.

2. Schallleistung

Die von einem Bauteil (Schallquelle) in Schall umgewandelte Energie wird als Schallleistung bezeichnet. Diese Schallleistung wird der Luft in Form von Druckschwankungen zugeführt. Die Schallleistung ist eine nicht direkt messbare Größe. Man bestimmt sie, in dem man den Schalldruck über eine halbkugel- oder kugelförmige Fläche um die Schallquelle herum

integriert. Die Schallleistung ist somit eine raum- und entfernungsunabhängige Größe. Sie wird für alle weiteren Berechnungen verwendet. Die Schallleistung wird in der Einheit Watt [W] angegeben.

Für den praktischen Gebrauch wurden dimensionslose Kennzahlen eingeführt, die auf A.G. Bell zurückgehen.

3. Schalldruckpegel

Das logarithmische Verhältnis eines Schalldruckes p zu der Bezugsgröße p₀ wird als Schalldruckpegel L_p bezeichnet und in der Einheit Dezibel [dB] angegeben.

$$L_p = 10 \log \left(\frac{p}{p_0}\right)^2 \text{ in dB}$$

Der Bezugswert ist $p_o=2*10^{-5}$ N/m² und ist der Mindest-Schalldruck, den der Mensch überhaupt wahrnimmt. Er wird auch als Hörschwelle bezeichnet. Der Hörbereich (Hörschwelle) liegt damit zwischen 0 und 120 dB.

4. Schallleistungspegel

Das logarithmische Verhältnis der Schallleistung W zur Bezugsgröße W_0 wird als Schallleistungspegel bezeichnet und hat ebenfalls die Einheit Dezibel [dB].

$$L_W = 10 \log \frac{W}{W_0}$$
 in dB

Die Bezugsgröße ist $W_0 = 10^{-12}$ W. Obwohl der Schalldruckpegel und Schallleistungspegel mit der gleichen Bezeichnung (dB) versehen sind, handelt es sich physikalisch um unterschiedliche Dinge.

Der Schallleistungspegel ist der an der Schallquelle erzeugte Schall (die dem Raum zugeführte Energie), der Schalldruckpegel ist der in einem bestimmten Abstand von der Schallquelle registrierte Schall.

Damit ist in der Regel der Schallleistungspegel auch größer als der Schalldruckpegel.

5. Frequenzbewertung

Der Mensch empfindet gleiche Schalldruckpegel bei unterschiedlichen Frequenzen ebenfalls unterschiedlich. So wird ein Schalldruckpegel bei niedrigen Frequenzen in der Regel als leiser und weniger störend empfunden als bei höheren Frequenzen. Um diesem subjektiven Empfinden Rechnung zu tragen, werden die objektiven gemessenen Schalldruckpegel dem Lautstärkeempfinden angepasst. Man spricht von einer Bewertung des Schalldruckpegels. Diese Bewertung erfolgt so, dass bei für den Menschen weniger empfindlichen Frequenzen ein bestimmter Betrag vom gemessenen Schalldruckpegel abgezogen wird, während in den anderen Frequenzbereichen ein bestimmter Betrag addiert wird. Von den unterschiedlichen Bewertungen hat sich nahezu ausschließlich die A-Bewertung durchgesetzt. Hierbei erhält man eine Aussage in Form einer Einzahlangabe, die als A-bewerteter Schalldruckpegel bzw. A-bewerteter Schallleistungspegel bezeichnet wird. Die Einheit lautet dB(A).

6. Schallpegeladdition

Sind mehrere Schallquellen vorhanden, so müssen die entsprechenden Pegel zu einem Gesamtschallpegel addiert werden. Dabei besitzen sowohl für den Schallleistungspegel wie für den Schalldruckpegel die gleichen Gesetzmäßigkeiten Gültigkeit. Für mehrere Schallquellen mit gleichem Pegel gilt folgende Beziehung:

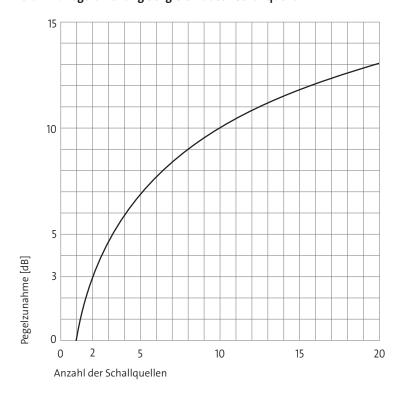
$$L_{ges} = L_1 + 10 * log n [dB]$$

Dabei ist n die Anzahl der Schallquellen. Diese Funktion ist in der Grafik 1 dargestellt.

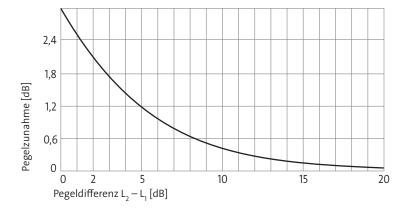
Sind Schallquellen mit unterschiedlichem Pegel vorhanden, so wird zum jeweils höheren Pegel eine Pegelzunahme ΔL addiert, die von der Pegeldifferenz abhängt und nach folgender Gleichung berechnet wird:

$$\Delta L = 10 * log (1 + 10^{(L_1 - L_2/10)})$$

Diese Beziehung gilt für $L_2 > L_1$ und ist ebenfalls graphisch dargestellt (Grafik 2).


Sind mehrere Schallquellen mit unterschiedlichem Pegel vorhanden, so ist die Addition schrittweise vorzunehmen. Zunächst wird aus 2 Pegeln der Summenpegel ermittelt, dieser wird dann mit dem dritten addiert und so weiter. Jede einzelne Addition erfolgt entsprechend der angegebenen Gleichung bzw. dem Diagramm. Die Reihenfolge der Berechnung ist dabei unerheblich, man erhält immer das gleiche Ergebnis.

Damit kann folgendes festgestellt werden:


Die Addition zweier Schallquellen mit gleichem Pegel ergibt einen Zuwachs von 3 dB.

Ist die Pegeldifferenz größer als 10 dB, so erfolgt praktisch keine Addition. Formal ist zwar der Zuwachs 0,4 dB, er wird jedoch nicht berücksichtigt, weil der Mensch nur Änderungen von mindestens 3 dB wahrnehmen kann.

Grafik 1: Pegelerhöhung bei gleich lauten Schallquellen

Grafik 2: Pegelerhöhung bei unterschiedlich lauten Schallquellen

7. Ermittlung des Schalldruckpegels im Raum

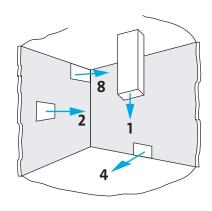
Für die Ermittlung des Schalldruckpegels im Raum müssen die Schallquellen und ihre Schallleistungspegel bekannt sein.

Der von einer Schallquelle ausgesandte Schallleistungspegel erzeugt in einem Raum einen bestimmten Schalldruckpegel, der abhängig vom Abstand zur Geräuschquelle, seinem Richtwirkungsmaß und der Raumabsorption ist.

Dies führt zur Überlagerungen des direkten und des diffusen Schallfeldes und wird mit folgender Gleichung beschrieben:

$$L_{p} = L_{W} + 10 log \left(\frac{Q}{4\pi r^{2}} + \frac{4}{A}\right) log dB$$

Q: Richtungsfaktor


r: Abstand von der Schallquelle in m

A: Absorptionsfläche des Raumes in m² Sabine

Folgende Richtungen werden unterschieden:

O = 1 in Raummitte

- 2 in der Wandmitte
- 4 in der Mitte einer Raumkante
- 8 in einer Raumecke

Der Wert für den Richtungsfaktor liegt zwischen 1 und 8 und ist abhängig von dem Abstrahlwinkel. Für die praktische Berechnung kann man den Richtungsfaktor unabhängig von allen Parametern bei einem Abstrahlwinkel 0° mit 8 ansetzen, für alle anderen Fälle mit 4.

Absorptionsfläche:

Die äquivalente Absorptionsfläche lässt sich aus der Nachhallzeit T ermitteln.

$$A = 0.163 \frac{V}{T} in m^2$$

V: Raumvolumen in m³

T: Nachhallzeit in s

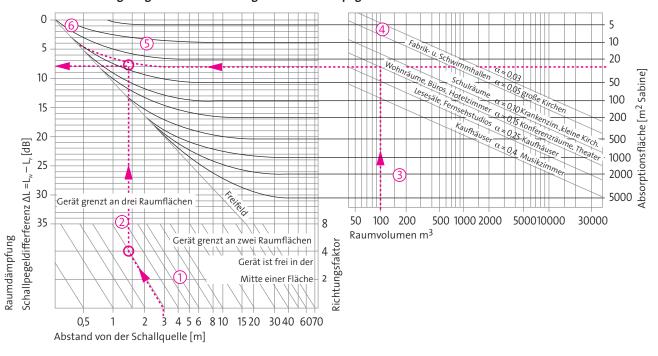
Die Nachhallzeit kann experimentell ermittelt werden. In Planungsphasen kann die Nachhallzeit entsprechend der VDI 2081 gemäß nachfolgender Tabelle ermittelt werden.

Raumart	Beispiel	Mittlere Nachhallzeit [s]
	Einzelbüro	0,5
Arbeitsräume	Großraumbüro	0,5
	Werkstätten	1,5
	Konzertsäle, Opernhäuser	1,5
Versammlungsräume	Theater, Kinos,	1,0
	Konferenzräume	1,0
Wohnräume	Hotelzimmer	0,5
Sozialräume	Ruheräume, Pausenräume	0,5
	Lesesäle	1,0
Unterrichtsräume	Hörsäle	1,0
	Klassen-/Seminarräume	1,0
	OP-Räume	2,0
Krankenhaus	Krankenzimmer	1,0
	Bäder und Schwimmbäder	2,0
	Museen	1,5
Räume mit Publikumsverkehr	Gaststätten	1,0
	Verkaufsräume	1,0
Sportstätten	Turn- und Sporthallen, Schwimmbäder	2,0
Sonstige Räume	Rundfunk- und Fernsehstudios	0,5
	EDV-Räume	1,5

Tabelle: Nachhallzeit (Auszug aus der VDI 2081)

Die Raumdämpfung in Abhängigkeit von der Absorptionsfläche, von der Richtungscharakteristik und vom Abstand der Schallquelle kann auch dem nachfolgenden Diagramm entnommen werden.

Absorptionsfaktor a


Eine Wandfläche, die sämtliche ankommende Schallwellen absorbiert, hat den Absorptionsfaktor α =1. Unten stehende $\alpha_{\rm m}$ -Werte sind das Verhältnis von tatsächlicher Absorption zu ideal absorbierender Wand. Sie stellen einen Mittelwert dar.

Absorptionsfläche m² Sabine

Das ist diejenige Fläche, die sämtliche auftreffenden Schallwellen vollkommen absorbiert.

Sie ist **nicht identisch** mit der **gesamten Raumoberfläche**.

Umrechnungsdiagramm Schallleistungs- in Schalldruckpegel

Beispiel Akustik:

Gegeben: Gerät mit einem Schallleistungspegel von 40 dB(A) montiert in einem Konferenzraum mit 100 m³ Raumvolumen

Gesucht: Wie groß ist der Schalldruckpegel in einem Abstand von 3 m vom Gerät?

Annahme für den praktischen Gebrauch: Richtungsfaktor 4

- Einstieg bei Punkt ① Abstand 3 m der Parallellinie bis zum Schnittpunkt mit der Waagerechten von Richtungsfaktor 4 zum Punkt ② folgen
- 2. Von dort aus eine senkrechte Linie nach oben ziehen
- 3. Neuer Einstieg bei Punkt ③ Raumvolumen 100 m³ (linke Seite) senkrecht nach oben zum Schnittpunkt ④ mit der Linie des Absorptionsfaktors für Konferenzräume
- 4. Von dort aus parallel den Hilfslinien des linken Diagramms folgen bis zum Schnittpunkt (5)
- 5. Vom Punkt 5 aus waagerecht zur Ordinate ergibt im Punkt 🌀 eine Raumdämpfung von 8 dB.

Damit beträgt der Schalldruckpegel $L_p = L_w - \Delta L = 40 \ dB(A) - 8 \ dB(A) = 32 \ dB(A)$ Dieser Wert von 8 dB(A) Raumdämpfung ist bei der Angabe des Schalldruckpegels auf den folgenden Seiten berücksichtigt worden.

Drallluftdurchlässe.

Die wohl bedeutendste Entwicklung in der klassischen Lüftungstechnik sind die Drallluftdurchlässe. Erst mit ihnen wurde es möglich, hohe Luftvolumenströme in Komfortbereichen einzubringen und damit hohe thermische Lasten abzuführen. Höchste Komfortbedingungen werden dabei trotzdem erreicht, da speziell die emcoair Drallluftdurchlässe durch ihre variabel einstellbare Induktion die Zuluftgeschwindigkeiten und Temperaturdifferenzen auf kürzestem Weg abbauen und somit für ein angenehmes und thermisch behagliches Klima im Aufenthaltsbereich sorgen.

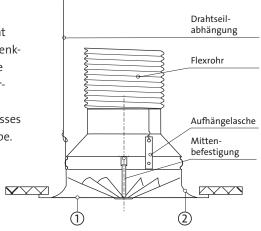
Anspruchvolles Design ist dabei eine Selbstverständlichkeit. emcoair Drallluftdurchlässe sind nicht nur in unterschiedlichen Grunddesigns und Standardabmessungen erhältlich, sondern in der Farbgebung und Abmessung an architektonische Vorgaben anpassbar.

Mit Drallluftdurchlässen können nahezu alle Aufgaben bei der Raumklimatisierung im Komfort- und Industriebereich gelöst werden. Der erzeugte flache hochinduktive Horizontalstrahl mit raschem Temperaturund Geschwindigkeitsabbau gewährleistet auch bei hohen Kühllasten und niedrigen Raumhöhen, dass sich die Behaglichkeitsanforderungen im Aufenthaltsbereich realisieren lassen.

Inhalt

Typ DRS

Beschreibung, Einsatzbereiche, Produktvorteile, Konstrukt. Aufbau und Funktionsweise	16
Raumlufttechnische Daten und Einsatzbereiche	17
Abmessungen	18
Variantenschlüssel	19
Typ DAL359	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstrukt. Aufbau und Funktionsweise	21
Raumlufttechnische Daten und Einsatzbereiche	23
Abmessungen	24
Variantenschlüssel	25
Typ DAL358	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstrukt. Aufbau	26
Funktionsweise, Raumlufttechnische Daten und Einsatzbereiche	28
Abmessungen	30
Variantenschlüssel	31
Anschlusskästen Typ AK	
Abmessungen	32
Variantenschlüssel	34


emcoair Drallluftdurchlass DRS

Der DRS ist ein hochinduktiver Drallluftdurchlass mit runder oder quadratischer Frontplatte mit eingestanzten Luftlenklamellen und einem integrierten Durchlassdiffusor aus Stahl. Der Luftdurchlass ist universell im Komfort- und Industriebereich in deckenbündigem oder freihängenden Einbau einsetzbar.

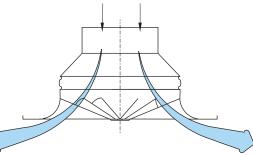
Der Drallluftdurchlass wird üblicherweise mit einem Anschlusskasten betrieben, kann aber auch direkt über ein Übergangsstück (bzw. Klemmflansch) mit integriertem Lochblech am Rohrende montiert werden.

Konstruktiver Aufbau

Der Drallluftdurchlass DRS besteht aus einem Frontblech (1) mit Luftlenklamellen, die in die Austrittsebene eines in Strömungsrichtung davorliegenden Diffusors (2) integriert sind. Die Befestigung des Durchlasses erfolgt mit einer mittigen Schraube.

Einsatzbereiche

- Komfortbereich
- Büro- und Reinräume
- Versammlungsräume
- EDV-Räume
- Kaufhäuser
- Konstante und variable Volumenstromsysteme
- Vorzugsweise in Räumen mit Raumhöhen von 2,20 m bis 6 m mit hohen Kühllasten

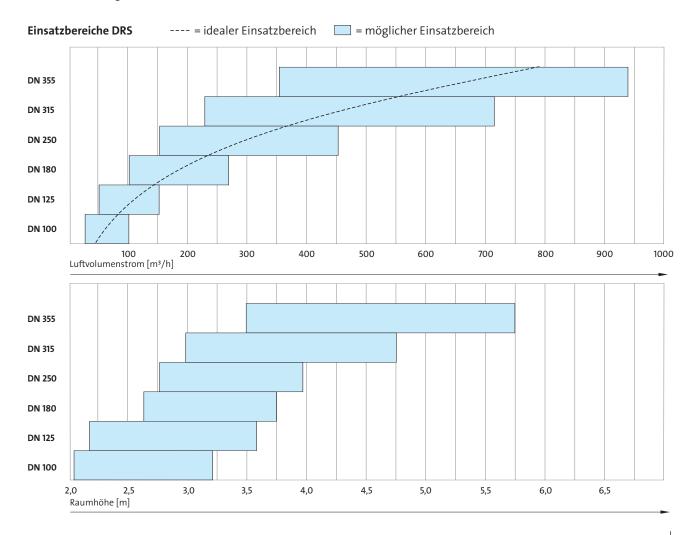

Produktvorteile

- Optimale Luftführung
- Niedrige Schallleistungspegel bei großen Volumenströmen
- Schneller Abbau von Geschwindigkeit und Temperaturdifferenz durch hohe Induktion

Funktionsweise

Die Luftlenklamellen teilen den Luftstrom in eine Vielzahl einzelner hochinduktiver Strahlen auf.

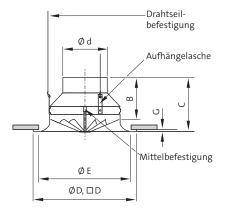
Durch Integration der Lamellen in die Austrittsebene des Diffusors ist auch im freihängenden Betrieb ein ausgeprägter Horizontalstrahl zu gewährleisten.

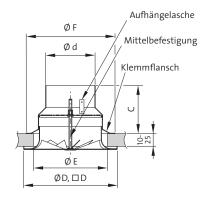


Drallluftdurchlässe Typ DRS

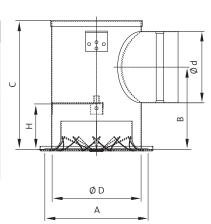
Raumlufttechnische Daten DRS

Nenngröße [-]	L _{WA} [dB(A)]	V₀ [m³/h]	Δp [Pa]	Mindestabstand [m]	x _{krit} [m]
DN 100	30	75	28	0,25	3,4
	35	95	45	0,15	4,3
	40	125	73	1,5	5,5
DN 125	30	110	32	0,5	2,9
	35	130	45	1,3	3,6
	40	165	68	2,3	4,5
DN 180	30	192	27	1,5	2,3
	35	230	38	2,4	2,8
	40	270	54	3,5	3,3
DN 250	30	365	29	3,7	2,0
	35	440	43	5,1	2,4
	40	530	62	6,7	2,8
DN 315	30	550	28	5,7	1,7
	35	670	40	7,5	2,1
	40	820	60	9,8	2,6
DN 355	30	750	34	7,4	1,8
	35	900	49	9,6	2,2
	40	1100	69	12,3	2,6


Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K

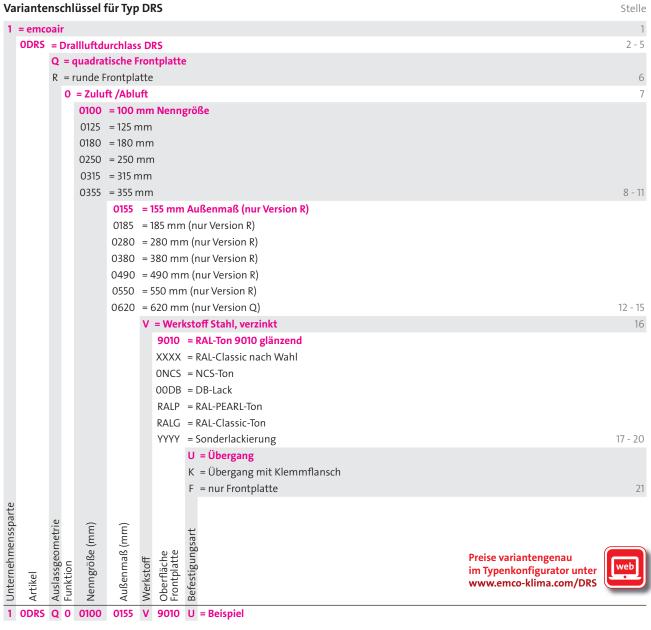

Abmessungen DRS U Anschlussart "Übergang"

Größe	DN 100	DN 125	DN 180	DN 250	DN 315	DN 355
Maß B	83	103	118	165	175	189
Maß C	108	125	151	205	230	249
Maß Ø D	155	185	280	380	490	550
Maß □ D	620	620	620	620	620	620
Maß Ø d	98	98	158	198	248	278
Maß Ø E	120	150	245	345	455	515
Maß Ø G	6,5	6,5	6,5	6,5	6,5	6,5
Maß □ G	12	12	12	12	12	12


Abmessungen DRS KLFL Anschlussart "Klemmflansch"

Größe	DN 100	DN 125	DN 180	DN 250	DN 315	DN 355
Maß C	90	96	119	143	169	185
Maß Ø D	155	185	280	380	490	550
Maß □ D	620	620	620	620	620	620
Maß Ø E	117	142	226	311	400	448
Maß Ø F	148	175	255	340	429	478
Maß Ø d	98	98	158	198	248	278

Abmessungen DRS AK Anschlussart "Kasten"


Größe	DN 100	DN 125	DN 180	DN 250	DN 315	DN 355
Maß A	142	168	251	336	425	473
Maß B	113	130,5	158	188	228	248
Maß C	177	207	252	302	367	402
Maß D	122	148	231	316	405	453
Maß Ø d	98	123,5	158	198	248	278,5
Maß H	62,5	67,3	77,5	87,5	102,5	107,3

Grundlagen und Systemvorteile

Typ DRS

Variantenschlüssel für Typ DRS

Variantenschlüssel Standardanschlusskästen runde Version für Typ DRS 1 = emcoair A = Anschlusskasten für Luftdurchlässe emcoair DRS und emcoair DIA 2 1 = Rund Version 1 0100 = Nenngröße DN 100 0125 = Nenngröße DN 125 0180 = Nenngröße DN 180 0250 = Nenngröße DN 250 0315 = Nenngröße DN 315 0355 = Nenngröße DN 355 4 - 7 177 = mm Höhe für DN 100 287 = mm Höhe für DN 125 252 = mm Höhe für DN 180 302 = mm Höhe für DN 250 367 = mm Höhe für DN 315 402 = mm Höhe für DN 355 8 - 10 S = Stutzenposition seitlich 11 098 = mm Stutzendurchmesser für DN 100 123 = mm Stutzendurchmesser für DN 125 158 = mm Stutzendurchmesser für DN 180 198 = mm Stutzendurchmesser für DN 250 248 = mm Stutzendurchmesser für DN 315 278 = mm Stutzendurchmesser für DN 355 12 - 14 1 = Stutzenanzahl 15 V = Werkstoff Stahl, verzinkt 16 17 - 20 0000 = Oberfläche unlackiert A = Abkantung außen 21 0 = ohne Dämmung 22 G = mit Lochblech, mit Drossel, ohne Lippendichtung H = mit Lochblech, mit Drossel, mit Lippendichtung 23 Produktgruppe (1 = emcoair) Stutzendurchmesser in mm Typenbezeichnung Auslassgeometrie Stutzenposition Nenngröße DN Stutzenanzahl Höhe in mm Abkantung Oberfläche Werkstoff 1 0100 177 S 098 V 0000 A 0 G = Beispiel 1

Stelle

Drallluftdurchlässe Typ DAL359

emcoair Drallluftdurchlass DAL359

Der DAL359 ist ein hochinduktiver Drallluftdurchlass mit quadratischer oder runder Frontplatte und eingesetzten Luftlenklamellen aus ABS. Das Gerät ist sowohl in geschlossenen Deckensystemen als auch in offener Deckeninstallation einsetzbar. Der DAL359 ermöglicht eine optimale Anpassung des Luftführungssystems an die Raumbedingungen. Die große Anzahl der strömungstechnisch und akustisch optimierten Luftführungselemente (Tragflügelprofil) ist optisch ansprechend und erlaubt selbst bei hohen Kühllasten und niedrigen Raumhöhen einen problemlosen Einsatz.

Die stufenweise Reduzierung des Austrittsquerschnittes der Luftführungselemente ermöglicht eine nachträgliche Anpassung auch im eingebauten Zustand an veränderte Volumenströme und Austrittstemperaturen.

Durch zusätzlichen Einsatz von Blindelementen oder sogenannten Doppelclips können unter Beibehaltung des optischen Erscheinungsbildes Austrittsimpuls, Wurfweite oder Strahldicke variiert werden.

Einsatzbereiche

- Komfortbereich
- Büroräume
- Reinräume
- Verwaltungszentren
- EDV-Räume
- Kaufhäuser
- Versammlungsräume
- Mehrzweckhallen
- Konstante und variable Volumenstromsysteme

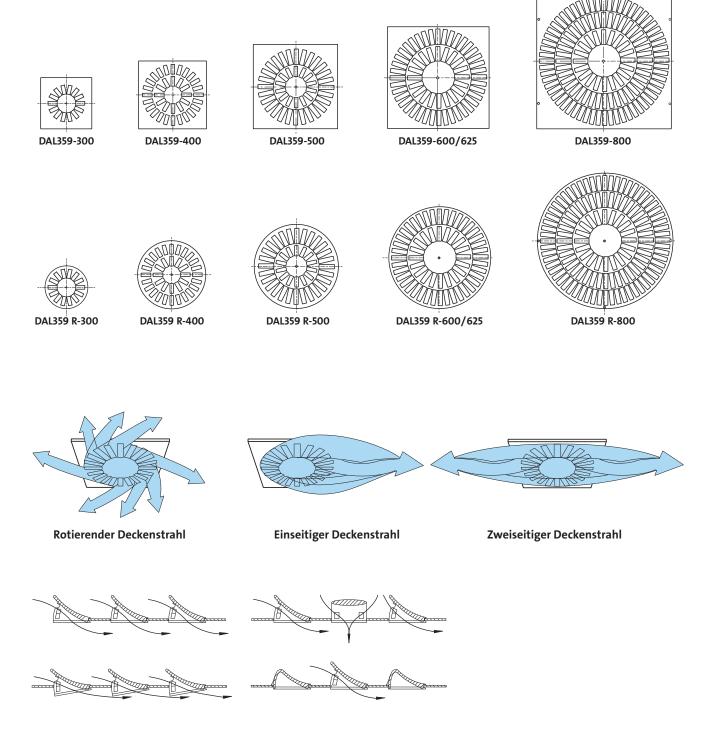
Produktvorteile

- Niedrige Schallleistungspegel bei großen Volumenströmen
- Schneller Abbau von Geschwindigkeit und Temperatur durch hohe Induktion
- Änderung der Strahlrichtung und Strahlform möglich
- Beeinflussung der Austrittsgeschwindigkeit und somit der Eindringtiefe

Konstruktiver Aufbau

Der Drallluftdurchlass DAL359 besteht aus einem quadratischen oder runden Frontblech mit eingesetzten Luftlenklamellen aus ABS. Die Befestigung des Frontbleches am Anschlusskasten erfolgt bis zur Durchlassgröße 625 über eine verdeckte, mittige Schraube, bei Größe 600 und 625 zusätzlich mit Traverse. Bei der Größe 800 erfolgt die Befestigung durch Schrauben im umlaufenden Rand.

Funktionsweise Die Lamelle, die als Tragflügelprofil ausgeführt ist, bewirkt eine akustisch und strömungstechnisch günstige Umlenkung der vertikal zuströmenden Luft in die horizontale Ebene des Frontbleches. Die formschlüssige Lagerung und Rasterung der Elemente verhindert dabei eine zufällige oder unerlaubte Verstellung. Bei einer Drehung um die Lagerungsachse wird eine definierte und reproduzierbare Reduzierung der Austrittsfläche um 50% erreicht. Bei gleichem Austrittsvolumenstrom wird eine größere Eindringtiefe bzw. im freihängenden Betrieb eine flache horizontale Luftführung erzielt. Durch Einsatz senkrecht ausblasender Luftlenkelemente (Doppelclips) lässt sich der horizontal austretende Luftstrom aufweiten. Diese Strahlform erlaubt bei deckenbündigem Einbau geringere Abstände der Luftdurchlässe zueinander, wodurch höhere

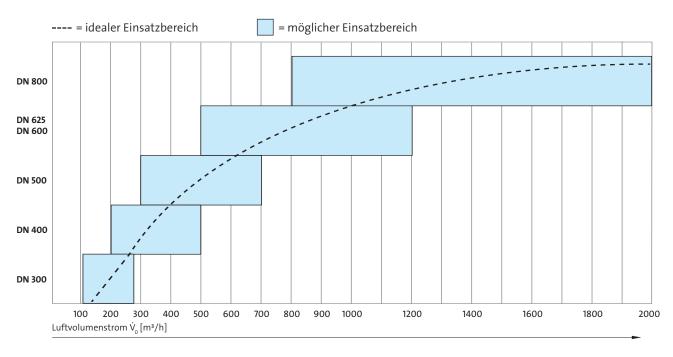

Luftwechsel erreicht werden können.

Durch optionale Blindclips kann der

Austrittsimpuls weiter gesteigert

werden

Grundlagen und Systemvorteile


Drallluftdurchlässe Typ DAL359

Raumlufttechnische Daten DAL359

Nenngröße [-]	L _{WA} [dB(A)]	$V_0 [m^3/h]$	Δp [Pa]	Mindestabstand [m]	x _{krit} [m]
DN 300	30	110	18	1,3	0,9
	35	135	27	1,5	1,1
	40	160	39	1,8	1,4
DN 400	30	300	23	4,4	2,2
	35	360	34	5,4	2,7
	40	440	51	6,6	3,3
DN 500	30	430	19	5,4	2,7
	35	530	29	6,6	3,3
	40	650	42	8,2	4,1
DN 600	30	550	9	3,4	1,7
	35	650	14	4,4	2,2
	40	800	19	5,0	2,5
DN 625	30	550	9	3,4	1,7
	35	650	14	4,4	2,2
	40	800	19	5,0	2,5
DN 800	30	1150	13	5,0	2,5
	35	1360	18	5,8	2,9
	40	1750	28	7,0	3,5

Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K.

Einsatzbereiche DAL359

Abmessungen/Gewichte DAL359 Anschlusskasten quadratisch

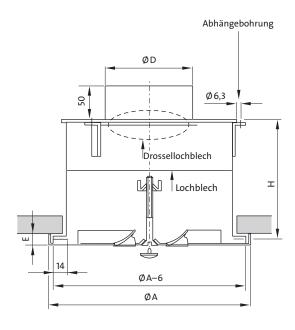
Größe	300	400	500	600	625	800
Maß □ A	298	398	498	595	620	800
Maß B	170	190	203	215	215	248
Maß H	275	315	340	365	365	430
Maß Ø D	158	198	222	248	248	313
Maß E	12	12	12	12	12	12
Gewicht [kg]	4,7	5,4	8,0	12,6	13,2	18,9
A _{eff.} [m²]	0,0158	0,0226	0,0356	0,0574	0,0574	0,1148

Abmessungen/Gewichte DAL359 R Anschlusskasten rund

Größe	300	400	500	600	625	800
Maß Ø A	300	400	500	600	623	800
Maß H	250	250	300	300	300	400
Maß Ø D	158	198	222	248	248	313
Maß E	10	10	10	10	10	10
Gewicht [kg]	4,7	5,1	7,6	12,0	17,5	18,0
A _{eff.} [m²]	0,0158	0,0226	0,0356	0,0574	0,0574	0,1148

Anmerkungen:

Beide Ausführungen gibt es mit Stutzen oben und seitlich.


Anschlusskastenhöhe bei Stutzenposition oben: siehe Tabelle "rund".

Anschlusskastenhöhe bei Stutzenposition seitlich: siehe Tabelle "quadratisch".

mit quadratischem Anschlusskasten

Abhängebohrung, 4 x Ø 6,5 Drossellochblech Lochblech Abhängebohrung, 4 x Ø 6,5

mit rundem Anschlusskasten

Grundlagen und Systemvorteile

Typ DAL359

Variantenschlüssel für Typ DAL359 Stelle 1 = emcoair D359 = Drallluftdurchlass DAL359 2 - 5 Q = quadratische Frontplatte R = runde Frontplatte Z = Zuluft A = Abluft0625 = 625 mm Nenngröße 0300 = 300 mm 0400 = 400 mm0500 = 500 mm $0600 = 600 \, \text{mm}$ $0800 = 800 \, \text{mm}$ 8 - 11 XXXX = Angabe der gewünschten Größe in mm 600 = 600 mm Lochbildmaß 300 = 300 400 = 400500 = 500 800 = 800 12 - 14 V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A S = Edelstahl V4A 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung E6C0 = naturfarbig eloxiert W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 16 - 19 S = Farbe des Luftlenkelementes schwarz A = schwarz (UL94-V0)B = weiß (UL94-V0) W = weiß G = grau Y = Sonderfarbe E = entfällt (nur bei Abluft) T = verdeckte Befestigung durch mittige Schraube (nicht für Nenngröße 800 mm) L = Befestigung über Schraubenlöcher in der Blende V = Schraublöcher in der Blende über mittige Schraube (verdeckt) 21 Farbe des Luftlenkelementes Befestigungsart Oberfläche Frontplatte Unternehmenssparte

D359 Q Z 0625 600 V 9010 S T = Beispiel

Werkstoff

Lochbildmaß (mm)

Nenngröße (mm)

Artikel

Auslassgeometrie Funktion

Preise variantengenau

im Typenkonfigurator unter

www.emco-klima.com/DAL359

emcoair Drallluftdurchlass DAL358

Der DAL358 ist ein hochinduktiver Drallluftdurchlass mit quadratischer oder runder Frontplatte und integrierten Exzenterwalzen aus ABS mit Gleichrichterprofilen.

Er ist universell sowohl in geschlossenen Deckensystemen als auch bei offener Deckeninstallation einsetzbar. Die auch im eingebauten Zustand mögliche Drehung der Exzenterwalzen erlaubt die Realisierung jeder gewünschten Strahlform.

Der DAL358 ermöglicht eine optimale Anpassung des Luftführungssystems an die Raumbedingungen.

Durch in das Frontblech integrierte Walzenelemente ist jede gewünschte Strahlform auch nachträglich im eingebauten Zustand einstellbar. Aufgrund der strömungstechnisch günstigen Luftführung an den Walzenelementen sind große Austrittsgeschwindigkeiten bei niedrigem Schallleistungspegel möglich.

Wegen der stabilen Luftstrahlführung, der hohen Induktion bereits im Austrittsschlitz (infolge der Zirkulationsströmung um die Walze) und der stabilen Strahlcharakteristik sind diese Drallluftdurchlässe besonders für variable Volumenströme geeignet. Eine Reduzierung des Volumenstromes auf 30 % ist ohne Änderung der Strahlform möglich. Dralleffekt und Induktionsverhältnis bleiben erhalten.

Einsatzbereiche

- Komfortbereich
- Büroräume
- Reinräume
- Verwaltungszentren
- EDV-Räume
- Kaufhäuser
- Versammlungsräume
- Mehrzweckhallen
- Konstante und variable Volumenstromsysteme

Produktvorteile

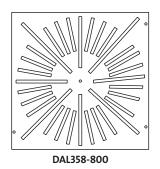
- Niedrige Schallleistungspegel bei großen Volumenströmen
- Schneller Abbau von Geschwindigkeit und Temperatur
- 360° drehbar gelagerte emco-Exzenterwalzen
- Bauseitige Änderung der Strahlform möglich
- Möglichkeit zur gezielten Änderung der Austrittsgeschwindigkeit

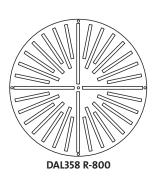
Konstruktiver Aufbau

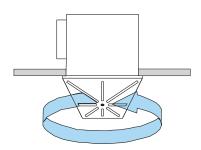
Der Drallluftdurchlass DAL358 besteht aus einem quadratischen oder runden Frontblech mit radial eingeclipsten Exzenterwalzen aus ABS mit integrierten Gleichrichtern.

Der Durchlass wird mit einem Anschlusskasten betrieben. Die Frontblechbefestigung erfolgt bis Größe 625 mit einer verdeckten, mittigen Schraube. Bei Größe 600 und 625 zusätzlich mit Traverse. Für die Größe 800 ist nur eine Schraubbefestigung (zusätzlich 4 Schrauben an den Ecken der Blende) lieferbar.

Grundlagen und Systemvorteile


Drallluftdurchlässe Typ DAL358



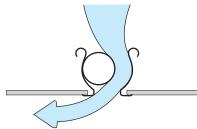


Funktionsweise

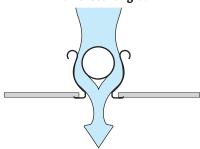
Die 100 mm langen emco-Exzenterwalzen sind einzeln stufenlos um 360° drehbar gelagert.

Im Standardarbeitsbereich (Walzenstellungen zwischen 1A und F6) kann die Luft bei konstantem Austrittsquerschnitt/Austrittsimpuls um 180° kontinuierlich umgelenkt werden. Bei Drehung über diesen Bereich hinaus (Walzenstellungen 21 bis 65) wird der Austrittsquerschnitt stufenlos verengt und somit der Austrittsimpuls erhöht.

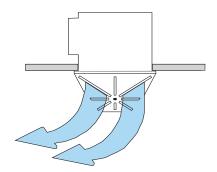
Die exzentrisch gelagerte Walze bildet mit den profilierten Schlitzschienen einen Strömungskanal, der die Luft auf Kreisbahnen führt. In der Nähe der Oberfläche des Walzenkörpers stellt sich ein hoher Unterdruck ein. Dadurch wird der austretenden Luft eine Richtung aufgeprägt, die für die weitere Strahlbildung maßgebend ist.


Rotierender Deckenstrahl

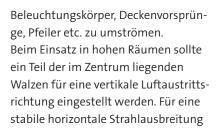
Durch die Einstellung aller Walzen in der Standardeinstellung wird ein rotierender Deckenstrahl mit Drall-komponente und damit verbundener hoher Induktion erzeugt.


Strahlverhalten

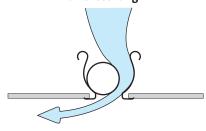
Die Frontplatte des DAL358 ist charakteristisch geprägt durch die radial angeordneten Schlitzdurchlasssegmente. Durch Drehen der einzelnen Walzen wird eine Vielzahl von Strahlformen möglich. Auf diese Weise besteht die Möglichkeit, Hindernisse wie



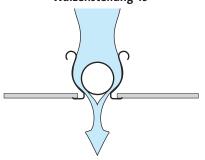
Walzenstellung CD

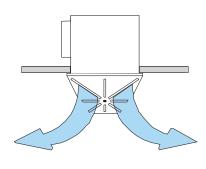


Dadurch ist eine stufenlose Strahleinstellung mit und ohne Querschnittsverengung möglich.



Einseitiger Deckenstrahl


Diese einseitige Ausblasrichtung wird durch die unterschiedliche Einstellung aller Walzen der einen und anderen Hälfte des Luftdurchlasses erreicht.



Walzenstellung 21

Walzenstellung 43

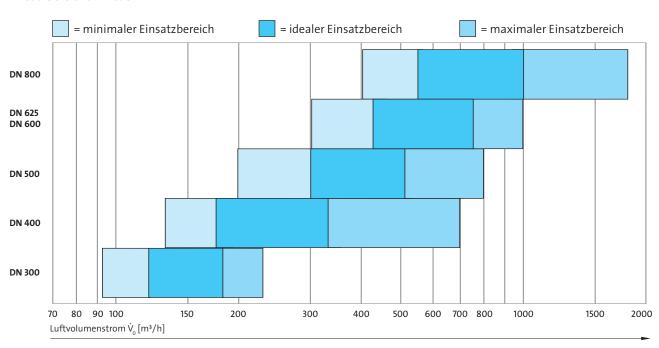
Zweiseitiger Deckenstrahl

Ein zweiseitiger Deckenstrahl ergibt sich durch die gegenläufige Walzeneinstellung von zwei Viertelkreissegmenten.

ist beim Einsatz des DAL358 keine anschließende Deckenkonstruktion notwendig.

Zu den genannten Strahlformen sind weitere Varianten inkl. Kennzeichnung für die Montage auf Anfrage lieferbar.

Grundlagen und Systemvorteile


Drallluftdurchlässe Typ DAL358

Raumlufttechnische Daten DAL358

Nenngröße [-]	L _{WA} [dB(A)]	Ÿ ₀ [m³/h]	Δp [Pa]	Mindestabstand [m]	x _{krit} [m]
DN 300*	30	100	15	0,4	0,7
	35	120	22	0,5	0,8
	40	150	34	0,8	1,0
DN 400	30	170	18	0,40	1,20
	35	220	23	0,40	1,50
	40	270	32	0,90	1,80
DN 500	30	300	18	0,65	1,30
	35	360	24	1,30	1,50
	40	430	32	2,10	1,50
DN 600	30	430	14	1,30	1,40
	35	520	19	2,10	1,60
	40	620	27	3,10	1,90
DN 625	30	430	14	1,30	1,40
	35	520	19	2,10	1,60
	40	620	27	3,10	1,90
DN 800	30	550	12	1,60	1,10
	35	660	17	2,60	1,40
	40	800	23	3,70	1,70

Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K.

Einsatzbereiche DAL358

^{*}Baugröße nur in quadratischer Ausführung erhältlich.

Abmessungen/Gewichte DAL358 Anschlusskasten quadratisch

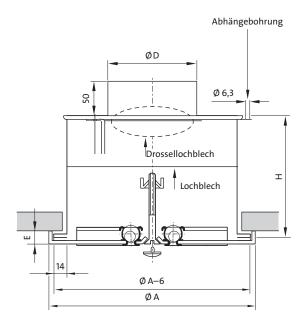
Größe	300	400	500	600	625	800
Maß □ A	298	398	498	595	620	800
Maß B	170	190	203	215	215	248
Maß H	275	315	340	365	365	430
Maß Ø D	158	198	222	248	248	313
Maß E	12	12	12	12	12	12
Gewicht [kg]	5,2	7,4	11,3	15,2	16,2	22,9
A _{eff.} [m²]	0,0081	0,0134	0,0214	0,0347	0,0347	0,0508

Abmessungen/Gewichte DAL358 R Anschlusskasten rund

Größe	400	500	600	625	800
Maß Ø A	400	500	600	623	800
Maß H	250	300	300	300	400
Maß Ø D	198	222	248	248	313
Maß E	10	10	10	10	10
Gewicht [kg]	8,7	10,4	14,1	15,0	21,4
A _{eff.} [m²]	0,0134	0,0200	0,0307	0,0307	0,0508

Anmerkungen:

Beide Ausführungen gibt es mit Stutzen oben und seitlich.


Anschlusskastenhöhe bei Stutzenposition oben: siehe Tabelle "rund".

Anschlusskastenhöhe bei Stutzenposition seitlich: siehe Tabelle "quadratisch".

mit quadratischem Anschlusskasten

Abhängebohrung, 4 x Ø 6,5 Drossellochblech Lochblech A-6

mit rundem Anschlusskasten

Grundlagen und Systemvorteile

Typ DAL358

Variantenschlüssel für Typ DAL358 Stelle 1 = emcoair D358 = Drallluftdurchlass DAL358 2 - 5 Q = quadratische Frontplatte R = runde Frontplatte Z = Zuluft A = Abluft0625 = 625 mm Nenngröße 0300 = 300 (nur Ausführung Q) 0400 = 400 0500 = 500 0600 = 600 0800 = 8008 - 11 XXXX = Angabe der gewünschten Größe in mm 600 = 600 mm Lochbildmaß 300 = 300 400 = 400 500 = 500 800 = 800 (nicht für Version R mit Funktion "Abluft") 12 - 14 V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A S = Edelstahl V4A 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung E6C0 = naturfarbig eloxiert W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 16 - 19 S = Farbe des Luftlenkelementes schwarz A = schwarz (UL94-V0)B = weiß (UL94-V0) W = weiß G = grau Y = Sonderfarbe E = entfällt (nur bei Abluft) T = verdeckte Befestigung durch mittige Schraube (nicht für Nenngröße 800 mm) L = Befestigung über Schraubenlöcher in der Blende V = Schraublöcher in der Blende über mittige Schraube (verdeckt) 21 Farbe des Luftlenkelementes Befestigungsart Oberfläche Frontplatte Unternehmenssparte Lochbildmaß (mm) Auslassgeometrie Nenngröße (mm) Preise variantengenau Werkstoff Funktion im Typenkonfigurator unter Artikel www.emco-klima.com/DAL358

D358 Q Z 0625 600 V 9010 S T = Beispiel

Abmessungen AK-Q Anschlusskasten quadratisch

Größe	300	400	500	600	625	800
Maß □ A	298	398	498	595	620	800
Maß B	170	190	203	215	215	248
Maß H	275	315	340	365	365	430
Maß Ø D	158	198	222	248	248	313

Abmessungen AK-R Anschlusskasten rund

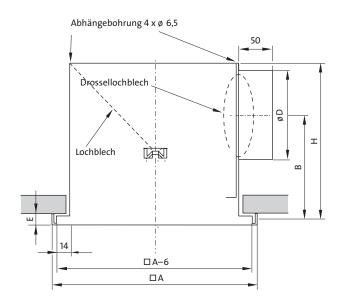
Größe	300	400	500	600	625	800
Maß □ A	-	400	500	600	623	800
Maß H	-	250	300	300	300	400
Maß Ø D	-	198	222	248	248	313

Anmerkungen:

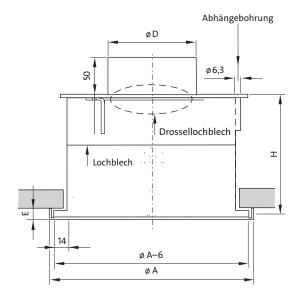
Beide Ausführungen gibt es mit Stutzen oben und seitlich.

Anschlusskastenhöhe bei Stutzenposition oben: siehe Tabelle "rund".

Anschlusskastenhöhe bei Stutzenposition seitlich: siehe Tabelle "quadratisch".


emcoair Anschlusskasten AK

aus verzinktem Stahlblech mit Anschlussstutzen, Lochblech und Aufhängelaschen.


Quadratische Auslässe mit seitlichem Anschlussstutzen und frontseitig bedienbarer Drossel;

runde Auslässe mit Anschlussstutzen von oben und am Stutzen bedienbarer Drossel.

emcoair AK-Q quadratischer Anschlusskasten

emcoair AK-R runder Anschlusskasten

emcoair Drallluftdurchlässe – Typ AK

Grundlagen und Systemvorteile

Drallluftdurchlässe Typ AK

Variantenschlüssel für Anschlusskasten AKD Stelle 1 = emcoair A = Anschlusskasten AKD 2 Q = in quadratischer Form R = in runder Form 0625 = 625 mm Nenngröße 0300 = 300 mm (nur in quadratischer Form) 0400 = 400 mm 0500 = 500 mm 0600 = 600 mm 0800 = 800 mm 4 - 7 365 = 365 mm Höhe 300 = 300 mm250 = 250 mm 400 = 400 mm275 = 275 mm 315 = 315 mm340 = 340 mm430 = 430 mm XXX = Angabe der gewünschten Höhe in mm 8 - 10 S = Stutzenposition seitlich O = oben Y = Sonderposition/-maß 11 248 = 248 mm Stutzendurchmesser 78 = 78 mm98 = 98 mm 123 = 123 mm158 = 158 mm178 = 178 mm198 = 198 mm 222 = 222 mm 278 = 278 mm 298 = 298 mm 313 = 313 mm 353 = 353 mm XXX = Angabe des gewünschten Stutzendurchmessers in mm 12 - 14 1 = 1 (Anzahl Stutzen in Stück) 2 = 2 Stück X = Angabe der Stutzenanzahl in Stück 15 V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A 0000 = unlackiert (Standard) 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung E6C0 = naturfarbig eloxiert 17 - 20

emcoair Drallluftdurchlässe – Typ AK

Grundlagen und Systemvorteile

Drallluftdurchlässe Typ AK

W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet	
UNBE = Edelstahl unbehandelt	17 - 20
A = Abkantung nach außen	17 - 20
I = Abkantung nach innen	21
	21
0 = ohne Dämmung 1 = mit Dämmung innen (20 mm Mineralwolle)	
8 = mit Dämmung innen (20 mm Mineralwolle)	
9 = mit Dämmung ausen (6 mm Armanex) 9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex)	22
G = mit Lochblech, mit Drossel, ohne Lippendichtung	2.2
A = ohne Lochblech, mit Drossel, mit Lippendichtung	
B = ohne Lochblech, ohne Drossel, ohne Lippendichtung	
C = ohne Lochblech, ohne Drossel, mit Lippendichtung	
D = ohne Lochblech, mit Drossel, ohne Lippendichtung	
E = mit Lochblech, ohne Drossel, ohne Lippendichtung	
F = mit Lochblech, ohne Drossel, mit Lippendichtung	
H = mit Lochblech, mit Drossel, mit Lippendichtung	23
0 = Traversenhöhe Standard	2.5
Y = Sonderposition/-maß	24
T = verdeckte Befestigung über mittige Schraube (nicht bei Größe 800 m	
S = verdeckte Befestigung über mittige Schraube (Anschlusskasten mon	
L = Befestigung über Schraubenlöcher in der Blende	lici tj
K = Befestigung über Schraublöcher in der Blende (Anschlusskasten mon	tiert)
V = Schraublöcher in der Blende und über mittige Schraube (verdeckt)	25
Jeniaabioener in der bienae and aber mittige semaabe (verdeerkt)	23
C U	
ast x	
rte stüc	
t (m.) (m.)	
met met met met since the met since the met met met met met met met met met me	
Seo Gibe Gibe Gibe Gibe Gibe Gibe Gibe Gibe	
assign	
Unternehmenssparte Artikel Auslassgeometrie Nenngröße (mm) Höhe (mm) Stutzenposition Stutzendurchmesser Anzahl Stutzen in Stück Werkstoff Oberfläche Anschlusskasten Abkantung Dämmung Ausrüstung Traversenhöhe Befestigungsart	
1 A Q 0625 365 S 248 1 V 0000 A 0 G 0 T = Beispiel	

Deckenluftdurchlässe.

Anspruchsvolle Deckensysteme und innenarchitektonische Vorgaben fordern im Hinblick auf die Lufteinbringung oft Luftdurchlässe, die sich in ihrer Form und Funktion von Projekt zu Projekt stark unterscheiden.

Emco Klima hat daher Deckenluftdurchlässe entwickelt, die sich aufgrund ihrer Funktion und Bauweise optimal integrieren lassen. Dabei sind die Abmessungen, neben den im Katalog dokumentierten Maßen, oft an die Ein-bausituation anpassbar und geforderte Strömungsformen entweder durch eine fixe Voreinstellung oder eine Motorverstellung erreichbar. In Kombination mit einer Regelungselektronik lassen sich dann auch in höheren Räumen, wie Konzert-, Messe- und Veranstaltungshallen, thermisch behagliche Raumluftzustände ebenso garantieren wie eine energiesparende Raumdurchströmung.

Patentierte Luftlenkelemente bzw. Luftlenksysteme sorgen in den verschiedenen Einsatzfällen sowohl für ausreichende horizontale Wurfweiten und senkrechte Eindringtiefen als auch für niedrige Schallleistungspegel. In Verbindung mit einer durch die emco Klima Planungsabteilung oder unseren technischen Innendienst erfolgten Auslegung und Planung garantieren die emcoair Deckenluftdurchlässe somit ein hohes Maß an Behaglichkeit, wodurch Arbeitskomfort und Leistungsfähigkeit garantiert werden.

In besonders anspruchsvollen Fällen steht Ihnen selbstverständlich unser Strömungslabor zur Seite, um mit Raumströmungsversuchen und Strömungssimulationen im Computer die optimalen Lösungen zu bestimmen.

Drallluftdurchlässe

Deckenluftdurchlässe

Inhalt

Typ DIA

Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau, Funktionsweise	38
Raumlufttechnische Daten und Einsatzbereiche	39
Abmessungen	
Variantenschlüssel	41
Тур МРС	
Beschreibung, Einsatzbereiche, Produktvorteile, Funktionsweise	
Aufbau und Material	45
Technische Leistungsdaten – Schnellauswahl, Empfohlener Einsatzbereich	46
Abmessungen	47
Variantenschlüssel	49
Typ MSA/MSA-V	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstrukt. Aufbau und Funktionsweise	50
Raumlufttechnische Daten, Abmessungen	52
Variantenschlüssel	53

emcoair Deckenluftdurchlass DIA

Der DIA ist ein hochinduktiver Deckenimpulsdurchlass mit runder oder quadratischer perforierter Frontplatte für den universellen Einsatz im Komfortund Industriebereich.

Der hochinduktive Horizontalstrahl mit flacher Ausprägung ist Garant für einen schnellen Temperatur- und Geschwindigkeitsabbau und gewährleistet auch bei hohen Kühllasten und niedrigen Raumhöhen die Einhaltung der Behaglichkeitsforderungen im Aufenthaltsbereich. Die konstruktive Ausgestaltung des emcoair DIA erlaubt sowohl die Integration in ein Deckenraster (deckenbündiger Einbau), als auch den freihängenden Einbau.

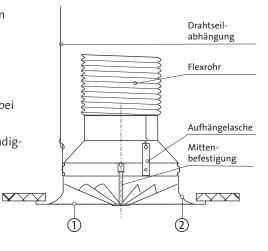
Vorzugsweise wird der Durchlass mit einem Anschlusskasten betrieben, er kann aber auch direkt über ein Übergangsstück (bzw. Klemmflansch) mit integriertem Lochblech am Rohrende montiert werden.

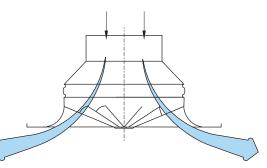
Einsatzbereiche

- Komfortbereich
- Büro- und Tagungsräume
- Gaststätten
- Versammlungsräume
- EDV-Räume
- Kaufhäuser
- Konstante und variable Volumenstromsysteme
- Vorzugsweise in Räumen mit Raumhöhen von 2,20 m bis 6 m mit hohen Kühllasten

Produktvorteile

- Optimale Luftführung
- Niedrige Schallleistungspegel bei großen Volumenströmen
- Schneller Abbau von Geschwindigkeit und Temperaturdifferenz durch hohe Induktion


Konstruktiver Aufbau


Der Deckenimpulsdurchlass DIA besteht aus einem perforierten Frontblech (1) mit Luftlenklamellen, die in die Austrittsebene eines in Strömungsrichtung davor liegenden Diffusors(2) integriert sind. Die Befestigung des Durchlasses erfolgt mit einer mittigen Schraube.

Funktionsweise

Die Luftlenklamellen teilen den Luftstrom in eine Vielzahl einzelner hochinduktiver Strahlen auf.

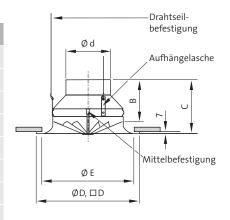
Durch Integration der Lamellen in die Austrittsebene des Diffusors ist auch im freihängenden Betrieb ein ausgeprägter Horizontalstrahl gewährleistet

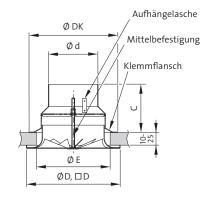

Drallluftdurchlässe

Deckenluft durchlässe Typ DIA

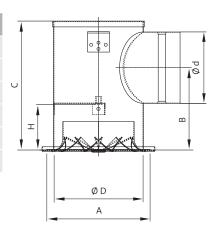
Raumlufttechnische Daten DIA

Nenngröße [-]	L _{WA} [dB(A)]	$V_0[m^3/h]$	Δp [Pa]	Mindestabstand [m]	x _{krit} [m]
DN 180	30	140	20	1,3	1,8
	35	170	29	2,0	2,2
	40	200	40	3,1	2,6
DN 250	30	250	20	3,3	1,6
	35	290	26	4,6	1,9
	40	340	37	6,0	2,2
DN 315	30	350	18	5,1	1,3
	35	410	25	6,8	1,6
	40	490	37	8,8	2,0
DN 355	30	410	17	6,7	1,4
	35	480	23	8,6	1,6
	40	540	29	11,0	2,0


Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K


Abmessungen DIA U Anschlussart "Übergang"

•				
Nenngröße DN *	180	250	315	355
Maß B	118	165	175	189
Maß C	151	205	230	249
Maß Ø D	284	384	494	554
Maß □ D	620	620	620	620
Maß Ø d	158	198	248	278
Maß Ø E	245	345	455	515
Maß Ø G	10	10	10	10
Maß □ G	12	12	12	12


Abmessungen DIA KLFL Anschlussart "Klemmflansch"

Nenngröße DN	180	250	315	355
Maß C	119	143	169	185
Maß Ø D	284	384	494	554
Maß □ D	620	620	620	620
Maß Ø DK	226	311	400	448
Maß Ø F	255	340	429	478
Maß Ø d	158	198	248	278

Abmessungen DIA AK Anschlussart "Kasten" (rund)

Nenngröße DN	180	250	315	355
Maß A	251	336	425	473
Maß B	158	188	228	248
Maß C	252	302	367	402
Maß D	231	316	405	453
Maß Ø d	158	198	248	278,5
Maß H	77,5	87,5	102,5	107,3

emcoair Deckenluftdurchlässe - Typ DIA

Grundlagen und Systemvorteile

Drallluft-

durchlässe

Тур DIA

Stelle Variantenschlüssel für Typ DIA 1 = emcoair ODIA = Drallluftdurchlass DIA 2 - 5 Q = quadratische Frontplatte R = runde Frontplatte 0 = Zuluft /Abluft 0180 = Nenngröße DN 180 0100 = DN 100 0125 = DN 125 0250 = DN 250 0315 = DN 315 0355 = DN 355 8 - 11 0284 = 284 (nur Version R) 0159 = 159 0189 = 189 0384 = 384(nur Version R) 0494 = 494 (nur Version R) 0554 = 554(nur Version R) 0620 = 620 (nur Version Q) XXXX = Angabe des gewünschten Außenmaßes in mm 12 - 15 V = Werkstoff Stahl, verzinkt 16 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung E6C0 = naturfarbig eloxiert W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 17 - 20 U = Übergang K = Übergang mit Klemmflansch F = nur Frontplatte Oberfläche Frontplatte **-** Unternehmenssparte Auslassgeometrie Nenngröße (mm)

Außenmaß (mm)

ODIA Q 0 0180 0284 V 9010 U = Beispiel

Funktion

Artikel

Werkstoff

Befestigungsart

Preise variantengenau

im Typenkonfigurator unter

www.emco-klima.com/DIA

Variantenschlüssel Standardanschlusskästen runde Version für Typ DIA Stelle 1 = emcoair A = Anschlusskasten für Luftdurchlässe emcoair DRS und emcoair DIA 2 1 = Rund Version 1 0180 = Nenngröße DN 180 0100 = DN 100 0125 = DN 125 0250 = DN 250 0315 = DN 315 0355 = DN 355 4 - 7 252 = Höhe 252 177 = 177207 = 207 302 = 302 367 = 367 402 = 402 8 - 10 S = Stutzenposition seitlich 11 158 = Stutzendurchmesser 158 098 = 98 123 = 123 198 = 198 248 = 248 278 = 278 12 - 14 1 = Stutzenanzahl 15 V = Werkstoff Stahl, verzinkt 16 0000 = Oberfläche unlackiert 17 - 20 A = Abkantung außen 21 0 = ohne Dämmung 22 G = mit Lochblech, mit Drossel, ohne Lippendichtung H = mit Lochblech, mit Drossel, mit Lippendichtung 23 E = Traversenhöhe entfällt 24 T = verdeckte Befestigung über mittige Schraube 25 Produktgruppe (1 = emcoair) Stutzendurchmesser in mm Typenbezeichnung Auslassgeometrie Stutzenposition Nenngröße DN Stutzenanzahl Traversenhöhe Höhe in mm Ausrüstung Oberfläche Abkantung Dämmung Werkstoff 1 0180 252 S 158 1 V 0000 A 0 G E T = Beispiel

Drallluftdurchlässe

durchlässe Typ MPC

emcoair Multifunktionaler Deckenluftdurchlass Typ MPC

Der emcoair MPC ist ein Luftdurchlass (Zu-/Abluft) mit perforierter Frontplatte für den Deckeneinbau.

Er ist in 3 Varianten für unterschiedliche Strömungsformen wie Verdrängungsströmung (Quellluft), radialer Strahlausbreitung entlang der Decke oder variable Luftrichtungen (1–4 seitiger Luftaustritt) lieferbar. Ein nachträglicher Wechsel der Strömungsform ist durch einfachen Austausch der Luftlenkelemente möglich. Eine abklappbare Frontblende, die mit Schnellverschlüssen befestigt ist, sorgt für einfache Revision und Reinigung.

Der Durchlass ist erhältlich in den Nenngrößen

- MPC 600/625
- MPC 300

Weitere Größen auf Anfrage.

Einsatzbereiche

- Komfortbereich
- Krankenhäuser
- Büro- und Tagungsräume
- Konstante und variable Volumenstromsysteme
- Kaufhäuser
- Großraumbüros
- Verwaltungszentren

Produktvorteile

- Lochblechfront in ansprechendem zeitlosen Design
- Hohe Variabilität bei der Luftlenkung
- Geringe Einbauhöhen
- Einfache Revision und Wartung
- Schnelle und einfache Installation
- Leichte Zugänglichkeit aller Komponenten
- Hygiene entsprechend VDI 6022
- Modularer Aufbau für deckenbündigen Einbau

Funktionsweise

Die Funktionsweise unterliegt den gewählten Strömungsformen respektive den Luftdurchlassvarianten (siehe Folgeseite).

1. Variante MPC-Q Quellluftartige Verdrängungsströmung

Diese Variante als Decken-Quellluftdurchlass erzeugt einen impulsarmen Vertikalstrahl bei minimalem Druckverlust und niedrigsten Schallleistungspegeln (Abb. 1).

2. Variante MPC-R Radiale Strahlausbreitung

Der radiale Deckenstrahl mit konzentrischer Luftverteilung entlang der Decke sorgt für eine gleichmäßige Luftverteilung entlang der Decke bei schnellem Abbau der Luftgeschwindigkeiten und niedrigen Schallleistungspegeln (Abb. 2 und 3).

3. Variante MPC-V Variable Strahlrichtung

Durch 4 Luftlenkelemente ist diese Variante in der Lage, mehrere Einzelstrahlen entlang der Decke zu erzeugen. Dabei sind variable Strömungsbilder möglich. Auch hier sind ein schneller Abbau der Luftgeschwindigkeiten sowie niedrige Schallleistungspegel gewährleistet (Abb. 4 bis 7).

Drallluftdurchlässe

Deckenluft

Тур МРС

Aufbau und Material

Der modulare Aufbau besteht aus folgenden Komponenten:

1. Anschlusskasten

aus verzinktem Stahlblech mit umlaufender Blendrahmenauflage, lackiert nach RAL (auf Wunsch Oberflächenbeschichtung nach Wahl); gefertigt in Luftdichtheitsklasse C nach EN 1751.

2. Luftlenkelemente nach Strömungsform

MPC-Q (Quelllüftung)

Anschlusskasten mit Blendrahmenauflage und Gleichrichtervlies für quellluftartige Verdrängungsströmung.

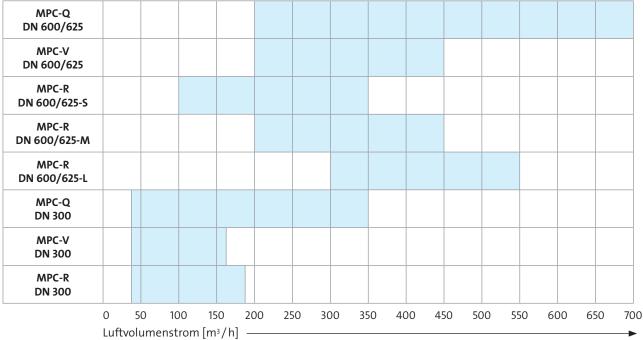
MPC-R (radialer Deckenstrahl)

Anschlusskasten mit Blendrahmenauflage und Luftlenkelement für radiale Strahlausbreitung entlang der Decke.

MPC-V (variable Strahlrichtung)

Anschlusskasten mit Blendrahmenauflage und Luftlenkelement für variable Luftrichtung entlang der Decke.

3. Perforierter Frontdurchlass


Technische Leistungsdaten – Schnellauswahl MPC

Ausführung [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	Mindestabstand* [m]	x _{krit} **w[m]
MPC-Q DN 600/625	25 30 35	480 610 680	12 19 23	- - -	- - -
MPC-R DN 600/625-S	30 35 40	240 290 350	13 19 27	0,8 0,9 1,1	1,4 1,9 2,5
MPC-R DN 600/625-M	30 35 40	325 395 470	16 24 34	0,8 1,3 2,0	1,2 1,8 2,4
MPC-R DN 600/625-L	30 35 40	410 490 570	18 25 33	1,8 2,1 2,4	1,6 2,3 3,3
MPC-V*** DN 600/625	30 35 40	300 380 460	10 16 24	_ ** _ ** _ **	_ ** _ ** _ **
MPC-Q DN 300	25 30 35	200 275 330	11 25 39	- - -	- - -
MPC-V DN 300	30 35 40	100 130 165	6 11 17	- ** - ** - **	_ ** _ ** _ **
MPC-R DN 300	30 35 40	150 170 195	13 17 20	0,8 0,9 1,1	0,7 0,9 1,2

^{*} Der Montageabstand gilt für eine Einbauhöhe von 3,0 m bei einer Oberkante des Aufenthaltbereches von 1,8 m, so dass die Geschwindigkeit im Aufenthaltsbereich 0,2 m/s nicht überschreitet.

Empfohlener Einsatzbereich

Ausführung MPC-Q

^{**} Werte auf Anfrage. Der kritische Strahlweg gilt für eine Temperaturdifferenz zwischen Zuluft und Raumluft von 4K.

^{*** 4-}seitig

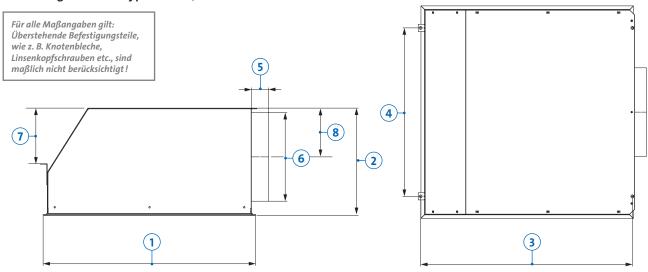
Drallluft-

durchlässe

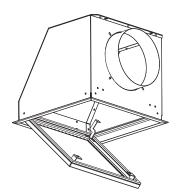
Varianten emcoair Typ MPC 600/625

Typ MPC-Q 600/625 (Quellluft)

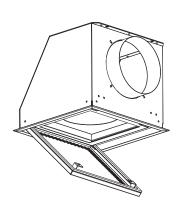
Typ MPC-V 600/625 (variabel)



Abmessungen emcoair Typ MPC 600/625


emcoairTyp MPC 600/625 - Abmessungen in mm

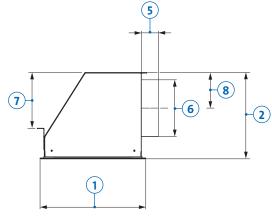
Nr.	Maß Variante	600	625
1	☐ Anschlusskasten, gesamt	595	619,5
2	Höhe Anschlusskasten, gesamt	300	300
3	Lochabstand Befestigung / Aufhängung 1	593	619,5
4	Lochabstand Befestigung/Aufhängung 2	472	496
5	Länge Zuluftstutzen	48	49
6	Durchmesser Zuluftstutzen (Nenngröße DN 250*)	248	248
7	Abstand Befestigungswinkel/AK-Oberkante	155	156
8	Abstand Stutzen / AK-Oberkante	137	136

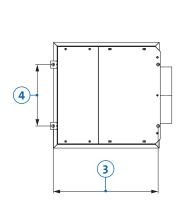


Varianten emcoair Typ MPC 300

Typ MPC-Q 300 (Quellluft)

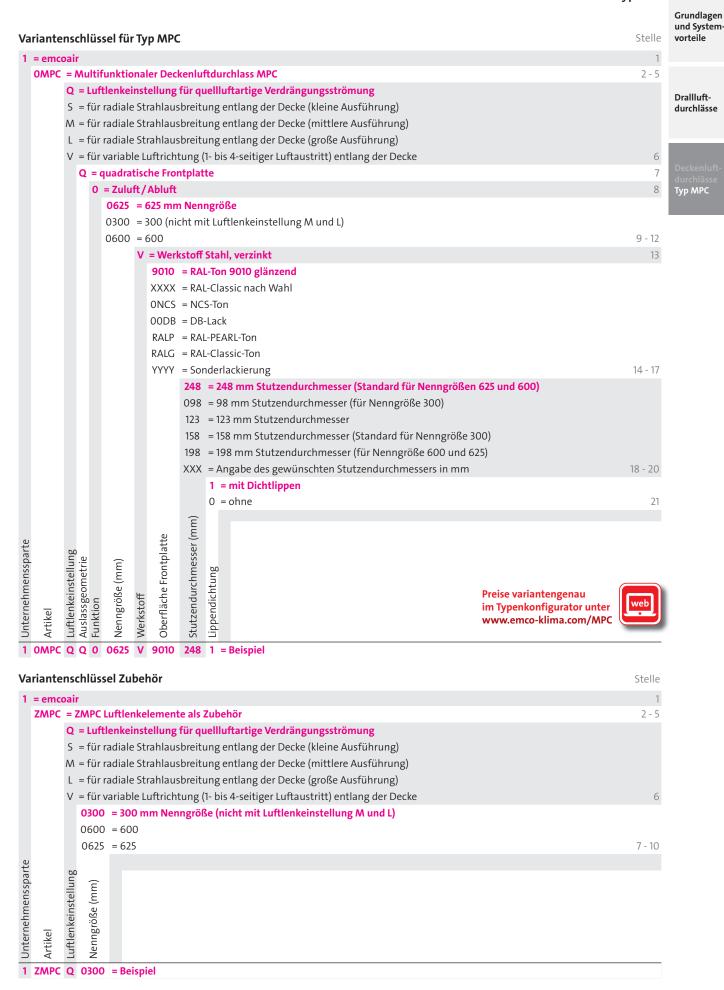
Typ MPC-R 300 (radial)




Typ MPC-V 300 (variabel)

Abmessungen emcoair Typ MPC 300

Für alle Maßangaben gilt: Überstehende Befestigungsteile, wie z.B. Knotenbleche, Linsenkopfschrauben etc., sind maßlich nicht berücksichtigt!



emcoair Typ MPC 300 - Abmessungen in mm

Nr.	Maß	
1	☐ Anschlusskasten, gesamt	295
2	Höhe Anschlusskasten, gesamt	241
3	Lochabstand Befestigung / Aufhängung 1	293
4	Lochabstand Befestigung / Aufhängung 2	172
5	Länge Zuluftstutzen	47
6	Durchmesser Zuluftstutzen (Nenngröße DN 160*)	158
7	Abstand Befestigungswinkel/AK-Oberkante	155
8	Abstand Stutzen / AK-Oberkante	100

emcoair Deckenluftdurchlässe – Typ MPC

emcoair Multistrahlluftdurchlass MSA

Der emcoair MSA ist ein verstellbarer Deckenluftdurchlass mit quadratischer Frontplatte und integrierten, parallel angeordneten Schlitzschienen mit Exzenterwalzen aus ABS und Gleichrichterprofilen.

Das Gerät ist universell in geschlossenen Deckensystemen und bei offener Deckeninstallation einsetzbar.
Die auch im eingebauten Zustand mögliche Drehung der Exzenterwalzen ermöglicht die Realisierung jeder gewünschten Strahlform.
Der MSA ermöglicht eine optimale Anpassung des Luftführungssystems an die Raumbedingungen sowie die Realisierung nahezu jeder Strahlform: Vom gebündelten Weitwurfstrahl bis zum Deckenstrahl.

Die gewünschte Strahlform ist auch nachträglich im eingebauten Zustand einstellbar.

Aufgrund der strömungstechnisch günstigen Luftführung an den Walzenelementen sind große Austrittsgeschwindigkeiten bei niedrigem Schallleistungspegel möglich.

Wegen der stabilen Luftstrahlführung, der hohen Induktion bereits im Austrittsschlitz (infolge der Zirkulationsströmung um die Walze) und der stabilen Strahlcharakteristik sind diese Deckenluftdurchlässe besonders für variable Volumenströme geeignet. Eine Reduzierung des Volumenstromes auf 30 % ist ohne Änderung der Strahlform möglich. Strahlausbreitung und Induktionsverhältnis bleiben erhalten.

Multistrahlluftdurchlass MSA-V

Bei der Version MSA-V besteht die Möglichkeit, über ein hand- oder motorisch bewegtes Schieberelement Strahlformen für den Kühl- und Heizfall entsprechend den jeweiligen Betriebszuständen einzustellen. Der MSA-V wird nur in der Größe 625 x 1250 mm gefertigt.

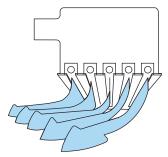
Einsatzbereiche

- Komfortbereich
- Büroräume
- Verwaltungszentren
- Kaufhäuser
- Versammlungsräume
- Mehrzweckhallen
- Konstante und variable Luftvolumenstromsysteme

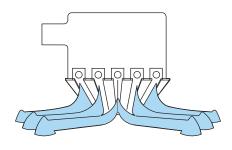
Produktvorteile

- Schneller Temperatur- und Geschwindigkeitsabbau je nach Strahleinstellung
- Niedriger Schallleistungspegel bei großen Luftvolumenströmen
- Besondere Stabilität durch formschlüssig integriertes Schlitzprofil und (ab Größe 500) hintergebaute Kreuztraverse
- 360° drehbar gelagerte emco-Exzenterwalzen
- Bauseitige Änderung der Strahlform möglich
- Möglichkeit zur gezielten Änderung der Austrittsgeschwindigkeit

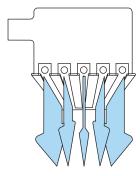
Konstruktiver Aufbau


Der Multistrahldurchlass MSA besteht aus einem quadratischen Frontblech mit parallel angeordneten Schlitzschienen, in die Exzenterwalzen aus ABS mit integrierten Gleichrichtern eingeschoben sind.

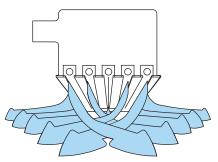
Der Luftdurchlass wird mit einem Anschlusskasten betrieben. Die Frontblechbefestigung erfolgt mittels verdeckter mittiger Schraube (Traversenbefestigung).


Drallluftdurchlässe

Deckenluft durchlässe Typ MSA/ MSA-V

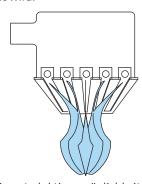

Funktionsweise MSA: Einseitige Strahlausbreitung

Die einseitige Strahlausbreitung (wahlweise rechts oder links) wird durch die Positionierung aller Walzen in die Stellung 1A (bzw. F6 für die andere Richtung) erreicht. Es entsteht ein unter ca. 45° gespreizter Deckenstrahl mit hoher Induktion. Diese Einstellung eignet sich insbesondere für den Heiz- und Kühlbetrieb in Räumen mit Deckenhöhen bis zu 3 m.



Getrennte Ausblasrichtungen

Werden alle Walzen der einen Luftdurchlasshälfte in die Position 1A und die Walzen der anderen Hälfte in die Position F6 gedreht, so erhält man zwei getrennte Ausblasrichtungen. Diese Einstellung eignet sich besonders gut für den Einsatz bei geringen Deckenhöhen und großen Raumlasten.



Deckenhöhen bis zu 5 m. Wenn die Walzen in den Einzelschlitzen jeweils gegeneinander gerichtet werden, ergeben sich zunächst zwei waagerechte Strahlen, die in der Luftdurchlassmitte aufeinandertreffen und senkrecht nach unten abgelenkt werden. Durch die anfängliche Strahleinschnürung besteht nur eine

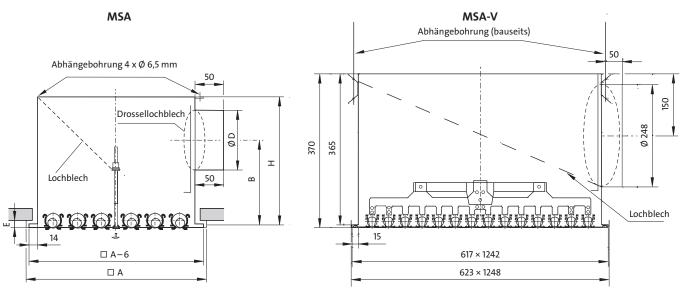
Zweiseitige Strahlformation

Diese zweiseitige Strahlformation ergibt sich durch wechselweise Positionierung der in der Walzenlängsachse hintereinanderliegenden Elemente mit den Einstellungen 1A und F6. Entsprechend der Anzahl der in einer Schlitzreihe vorhandenen Walzen ergibt sich eine Vielzahl von Einzelstrahlen, deren Geschwindigkeit durch die hohe Induktion sehr schnell abgebaut wird.

geringe Induktionsmöglichkeit.
Diese Ausführung eignet sich besonders gut für große Luftvolumenströme im Heizbetrieb und für Deckenhöhen bis zu 10 m. Durch Variation der Walzenstellung kann die Eindringtiefe den Erfordernissen angepasst werden.

Vertikalstrahl

Durch die Positionierung aller Walzen in der Stellung CD entsteht ein Vertikalstrahl mit guter Induktion. Durch die quadratische Luftdurchlassform bildet sich nach kurzer Zeit ein rechteckiges Strahlprofil aus, das große Eindringtiefen erreicht. Diese Einstellung eignet sich besonders für große Luftvolumenströme und


Raumlufttechnische Daten MSA/MSA-V

Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp[Pa]	Mindestabstand [m]	x _{krit} [m]	y [m]
DN 300	25 30 35	130 155 190	17 25 37	5,6 7,0 9,0	2,2 2,9 3,5	variabel
DN 400	25 30 35	190 230 270	10 14 20	5,2 6,0 9,0	1,9 2,4 2,9	variabel
DN 500	25 30 35	320 400 480	7 10 14	7,0 8,0 10,0	2,4 2,6 3,0	variabel
DN 600 / DN 625	25 30 35	450 550 680	6 8 12	7,0 9,0 11,0	1,6 2,2 2,8	variabel
MSA-V	25 30 35	540 650 820	10 15 23	> 10,0 > 10,0 > 10,0	2,2 2,6 3,5	1,6 2,0 2,5

Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K; Eindringtiefe im Heizfall y für $\Delta T = 10$ K

Abmessungen MSA mit Anschlusskasten

Größe	300	400	500	600	625
Maß A	298	398	498	595	620
Maß B	170	190	203	215	215
Maß H	275	315	340	365	365
Maß Ø D	158	198	222	248	248
Maß E	10	10	12	12	12
Schlitzanzahl [Stück]	6	8	12	14	14
Schlitzlänge [m]	1,2	2,4	4,8	7,0	7,0

Anschlussstutzen auch oben möglich.

Drallluft-

durchlässe

Variantenschlüssel für Typ MSA Stelle 1 = emcoair OMSA = Multistrahlluftdurchlass MSA 2 - 5 Q = quadratische Frontplatte Z = Zuluft A = Abluft0625 = 625 mm Nenngröße DN 0300 = 300 mm 0400 = 400 mm 0500 = 500 mm $0600 = 600 \, \text{mm}$ XXXX = Angabe der gewünschten Größe in mm 8 - 11 600 = 600 mm Lochbildmaß 300 = 300 mm400 = 400 mm500 = 500 mm 12 - 14 V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A S = Edelstahl V4A 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung EELO = edelstahlfarbig eloxiert (E2/C31) W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 16 - 19 S = Farbe des Luftlenkelementes schwarz W = weiß G = grau Y = Sonderfarbe E = entfällt (nur bei Abluft) T = verdeckte Befestigung durch mittige Schraube L = Befestigung über Schraubenlöcher in der Blende 21 Farbe des Luftlenkelementes Befestigungsart Oberfläche Frontplatte Unternehmenssparte -ochbildmaß (mm) Auslassgeometrie Funktion Nenngröße (mm) Preise variantengenau im Typenkonfigurator unter www.emco-klima.com/MSA

1 OMSA Q Z 0625 600 V 9010 S T = Beispiel

Schlitzluftdurchlässe.

Die patentierte emco Exzenterwalze ist Herzstück der Schlitzluftdurchlässe und darüber hinaus auch bewährtes Luftlenkelement in anderen bekannten Luftlenksystemen von emco Klima. Ab Werk wird auf Wunsch jedes einzelne Walzenelement in einer definierten, am Walzenkörper ablesbaren Einstellung ausgeliefert. Dadurch wird nicht nur maximaler Komfort garantiert, sondern auch aufwendige Einregelungsarbeit gespart.

Die optionale Motorverstellung lässt darüber hinaus den Einsatz im Kühlund Heizfall zu, wodurch sich der emcoair SAL innovativ von den üblichen Schlitzluftdurchlässen abhebt. Neueste Entwicklungen im Schlitzbereich haben zu gerundeten Schlitzluftdurchlässen geführt, die als erste dieser Art am Markt überhaupt eine harmonische Integration in den architektonischen Baukörper erlauben.

Eine freie Farbwahl bei Schlitzprofil und Walzenkörper runden das Programm der emcoair Schlitzluftdurchlässe perfekt ab.

Drallluft-durchlässe

durchlässe

Schlitzluft-durchlässe

Inhalt

Beschreibung, Einsatzbereiche und Produktvorteile
Konstruktiver Aufbau, Funktionsweise und Steuerung
Einsatzbereiche und Austrittsluftvolumenstrom
Raumlufttechnische Daten
Typ SAL35
Konstruktiver Aufbau und Abmessungen 60
Variantenschlüssel:
Luftdurchlässe
Anschlusskästen
Gehrungsecken 66
Zubehör SAL, SAL-V 67
Typ SAL50
Konstruktiver Aufbau und Abmessungen 68
Variantenschlüssel:
Luftdurchlässe
Anschlusskästen
Gehrungsecken
Typ SAL-V
Beschreibung, Einsatzbereiche und Produktvorteile
Konstruktiver Aufbau und Funktionsweise
Variantenschlüssel
Typ SAL-S
Beschreibung, Einsatzbereiche und Produktvorteile
Konstruktiver Aufbau
Funktionsweise und Raumlufttechnische Daten
Abmessungen
Variantenschlüssel:
Luftdurchlässe
Anschlusskästen
Gehrungsecken

emcoair Schlitzluftdurchlass SAL

Der Schlitzluftdurchlass SAL ist ein linearer Luftdurchlass, der in 35 mm und 50 mm Profilbreite gefertigt wird. Er besteht aus Aluminium-Strangpressprofilen mit eingeschobenen Exzenterwalzen aus ABS und wird mit einem Anschlusskasten betrieben.

SAL35

Der SAL35 wird je nach Einsatzfall und Luftmenge in ein- und mehrreihiger Ausführung hergestellt und kann zu Schlitzbändern beliebiger Länge zusammengefügt werden.

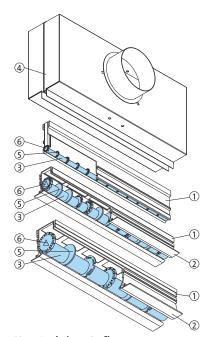
SAL50

Der SAL50 wird in der gleichen Ausführung wie der SAL35 angeboten. Der wesentliche Unterschied besteht in der größeren Profilbreite und dem damit möglichen größeren Luftvolumenstrom.

Einsatzbereiche

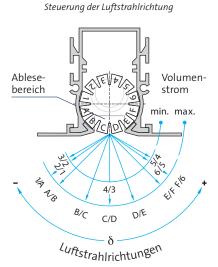
- In Komfortbereichen mit mittleren Raumhöhen im Heiz- und Kühlfall
- In Bereichen mit hohen Luftwechselraten und niedrigen Luftgeschwindigkeiten
- In Situationen, in denen der Durchlass in Form und Farbe den räumlichen Gegebenheiten angepasst werden muss
- Bei variablen Luftvolumenstromsystemen
- In Büroräumen, Konferenzräumen, EDV-Räumen, Reinräumen, Kaufhäusern, Kinos, Theatern etc.

Produktvorteile


- Beeinflussung der Austrittsgeschwindigkeit und Luftvolumenströme durch Einstellungsveränderung an der Luftlenkwalze
- Beeinflussung (beispielsweise Verlängerung) des kritischen Strahlweges
- Beeinflussung des Induktionsverhaltens und der Eindringtiefe
- Wahlweise Nutzung des Coanda-Fffektes
- Änderung der Ausblasrichtung zwischen 0° und 180°
- Reproduzierbare Luftdurchlasseinstellung
- definierte, auftragsbezogene Luftdurchlasseinstellung bei Fertigung
- Verstellmöglichkeiten auch nach Einbau
- Beständigkeit der Luftdurchlasseinstellung bei Reinigung

Drallluftdurchlässe

Deckenluftdurchlässe


Schlitzluftdurchlässe

Konstruktiver Aufbau

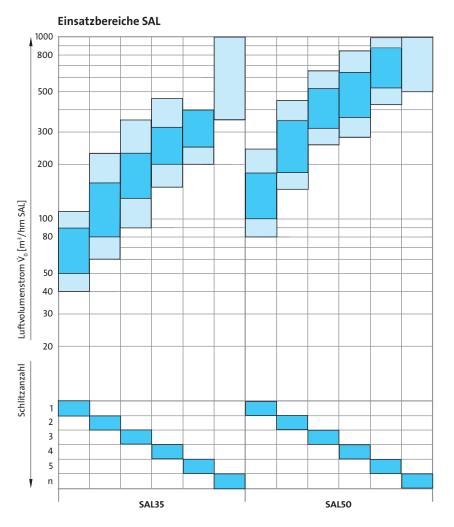
- ① Aluminium-Strangpressprofil
- ② Abdeck- oder Auflageprofil
- ③ Exzenterwalzen
- 4 Anschlusskasten
- ⑤ Gleichrichterlamelle
- ⑥ Ablese- und Einstellscheibe

Der Schlitzluftdurchlass SAL besteht aus Aluminium-Strangpressprofilen (1) mit Abdeck- bzw. Auflageprofilen (2), eingeschobenen, um 360° drehbar gelagerten Exzenterwalzen (3) und dem Anschlusskasten (4). Die akustisch und strömungstechnisch optimierte Exzenterwalze (3) besitzt auf ihrer Achse neben mehreren Gleichrichterlamellen (5) eine Ablese- bzw. Einstellscheibe (6) mit alphanumerischer Kennzeichnung, die eine definierte und reproduzierbare Walzeneinstellung erlaubt. Standardmäßig sind die Schlitzprofile mit dem Anschlusskasten formschlüssig vernietet.

Funktionsweise

Die exzentrisch gelagerte Walze bildet mit dem Schlitzprofil einen Strömungskanal, der die Luft auf Kreisbahnen führt. Ebenso wie in einem Wirbel stellt sich auf den inneren Kreisbahnen in der Nähe der Walzenkörperoberfläche ein hoher Unterdruck bei großen Strömungsgeschwindigkeiten ein. Dies bewirkt eine stabile Strömung und Strahllenkung bei geringen Schallleistungspegeln. Gleichzeitig findet bereits im Bereich der Austrittsebene des Schlitzes eine hohe Induktion statt. In Abhängigkeit von der Walzenstellung lassen sich bei konstantem Luftvolumenstrom beliebige Strahlrichtungen oder bei gleichbleibender Strahlrichtung variable Volumenströme einstellen. Um die Austrittsgeschwindigkeiten über die Walzenlänge möglichst gleichmäßig und senkrecht zur Walze auszubilden, sind Gleichrichterprofile angebracht.

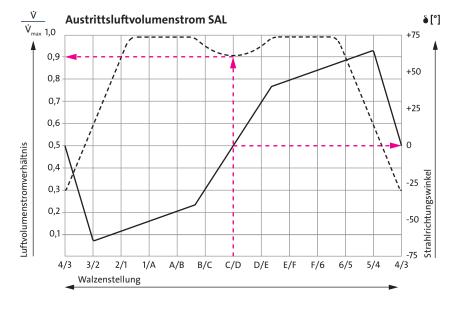
Steuerung der Luftstrahlrichtung


Die Lenkung der Luft aufgrund des Unterdruckgebietes am Walzenkörper erlaubt eine Richtungseinstellung zwischen 0° und 180°. Dabei sind für jede Strahlrichtung zwei Walzenstellungen möglich ("reduziert" ≙ min und "nicht reduziert"

max). Dieser Zusammenhang ist aus dem obenstehenden Bild erkennbar. Werden die Schlitzluftdurchlässe freihängend eingesetzt, stellt sich die Strahlrichtung immer entsprechend der Graphik ein. Bei deckenbündigem Einbau und einer wirksamen Walzengesamtlänge von 300 mm bildet sich in den Walzenstellungen E/F, F/6, 1/A, A/B sowie 2/1, 3/2, 5/4, 6/5 infolge des Coanda-Effektes ein Deckenstrahl aus.

Die einzeln verstellbaren Walzen haben eine Länge 100 mm (SAL35) und 150 mm (SAL50). Damit ergibt sich eine nahezu unbegrenzte Zahl von Strahlkombinationen.

In der werkseitigen Standardeinstellung sind aufeinander folgende Walzen im Wechsel auf 1/A und F/6 eingestellt. Diese hochinduktive Einstellung ist selbst bei hohen Kühllasten und Luftwechselraten problemlos einzusetzen.



Einsatzbereiche

Die Anzahl der notwendigen parallel verlaufenden Schlitzreihen ist vom Gesamtluftvolumenstrom abhängig. Folgende spezifischen Luftvolumenströme (bezogen auf 1 m aktive Schlitzlänge) werden empfohlen:

SAL35: 50 90 m³/hm SAL50: 100 ... 180 m³/hm

Freier Querschnitt: SAL35: 0,00668 m²/m SAL50: 0,01171 m²/m

Austrittsluftvolumenstrom

Das nebenstehende Diagramm zeigt den Zusammenhang zwischen austretendem Luftvolumenstrom und Walzenstellung bei gleichem Systemvordruck. Durch Erhöhung des Vordruckes lassen sich andererseits aber mit den "reduzierten" Walzenstellungen bei konstant gehaltenem Luftvolumenstrom die Austrittsgeschwindigkeiten deutlich erhöhen.

Beispiel:

Das Beispiel zeigt die Walzenstellung C/D mit einem Strahlrichtungswinkel von 0°. In diesem Fall liegt das Verhältnis von Austrittsvolumenstrom/max. Volumenstrom bei 90%.

Drallluftdurchlässe

Deckenluftdurchlässe

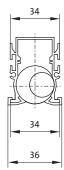
Schlitzluftdurchlässe

Raumlufttechnische Daten SAL35 und SAL50 (Tabelle gilt für L=1 m)

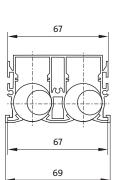
Nenngröße [-]	L _{wA} [dB(A)]	[m³/hm]	Δp [Pa]	Mindest- abstand [m]	x _{krit} [m]	V _o [m³/hm]	Δp [Pa]	y [m]
SAL35-1	30	90	15	0,5	8,0	95	21	1,6
	35	115	23	2,7	10,5	118	32	2,2
	40	140	33	10,5	13,3	142	45	2,7
SAL35-2	30	165	12	3,3	10,6	170	18	2,3
	35	200	18	12,0	13,8	210	25	2,9
	40	250	27	> 15,0	> 15,0	250	36	3,6
SAL35-3	30	230	10	8,0	12,3	240	15	2,7
	35	275	15	> 15,0	15,0	290	22	3,4
	40	350	23	> 15,0	> 15,0	360	33	4,5
SAL35-4	30	280	9	11,0	13,4	300	13	2,9
	35	360	14	> 15,0	> 15,0	370	20	3,8
	40	440	21	> 15,0	> 15,0	450	29	4,9
SAL50-1	30	170	18	8,3	8,4	165	21	1,6
	35	205	25	> 15,0	10,6	200	31	2,1
	40	250	38	> 15,0	13,8	240	42	2,6
SAL50-2	30	300	15	> 15,0	11,6	300	18	2,3
	35	375	22	> 15,0	14,8	360	25	2,8
	40	445	30	> 15,0	> 15,0	440	36	3,6
SAL50-3	30	430	13	> 15,0	13,6	420	16	2,7
	35	520	19	> 15,0	> 15,0	510	22	3,4
	40	630	27	> 15,0	> 15,0	600	31	4,3
SAL50-4	30	540	11	> 15,0	> 15,0	520	14	3,0
	35	660	17	> 15,0	> 15,0	640	20	3,8
	40	790	24	> 15,0	> 15,0	760	28	4,7

Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten (Isotherm). Kritischer Strahlweg für $\Delta T = -8$ K; Eindringtiefe im Heizfall y für $\Delta T = 10$ K.

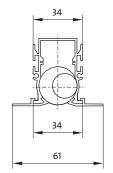
Blaue Spalten: Walzenstellung 1/A, F/6 (Horizontalstrahl), rote Spalten: Walzenstellung C/D (Vertikalstrahl)

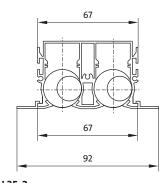

Konstruktiver Aufbau SAL35

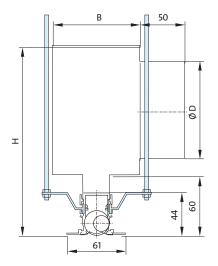
Schlitzluftdurchlassprofil aus Aluminium-Strangpressprofil in 1- oder 2-reihiger Ausführung (durch Kombination ist auch eine mehrreihige Ausführung möglich). Abdeck- und Auflageprofile standardmäßig natureloxiert (E6/C0) mit Exzenterwalzen aus ABS.


Lieferbare Größen L (mm):

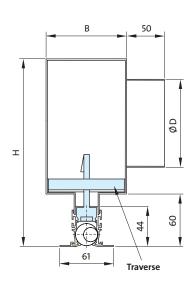
500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000


Zwischenabmessungen sind möglich. Schlitzbänder in beliebigen Längen können aus den Standardlängen zusammengesetzt werden. Die Verbindung erfolgt von der Raumseite her unsichtbar über Verbindungs- und Zentrierprofile.

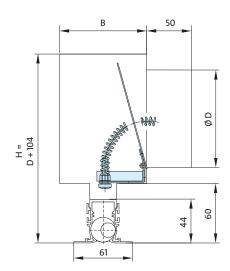

SAL35-1 einschlitziges SAL-Profil mit Abdeckprofilen (ZS)


SAL35-2 zweischlitziges SAL-Profil mit Abdeckprofilen (ZS)

SAL35-1 einschlitziges SAL-Profil mit Auflageprofilen (ZB)



SAL35-2 zweischlitziges SAL-Profil mit Auflageprofilen (ZB)

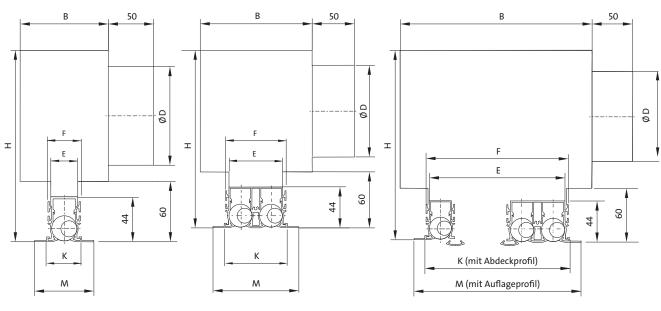

Aufhängung

Lose beigelegte Winkel, gelocht für bauseitige Gewindestangen M4 - M5.

Traversenbefestigung

Befestigung von Schlitzstücken bis zu 2 m Länge mit Anschlusskasten oder Einsatz in bauseitige Öffnung über Traverse.

Drossel


emcoair Schlitzluftdurchlässe – Typ SAL35

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

SAL35, 1-reihig

mit Anschlusskasten und Auflageprofil

SAL35, 2-reihig

mit Anschlusskasten und Auflageprofil

SAL35, mehrreihig

mit Anschlusskasten

SAL35, 1-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	88	88
Maß H	227	227
Maß E	25,3	25,3
Maß F	34	34
Maß K	36	36
Maß M	61	61
Maß Ø D	123	123
Stutzen [Stk.]	1	2

SAL35, 2-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	120	120
Maß H	242	242
Maß E	57,4	57,4
Maß F	67	67
Maß K	69	69
Maß M	92	92
Maß Ø D	138	138
Stutzen [Stk.]	1	2

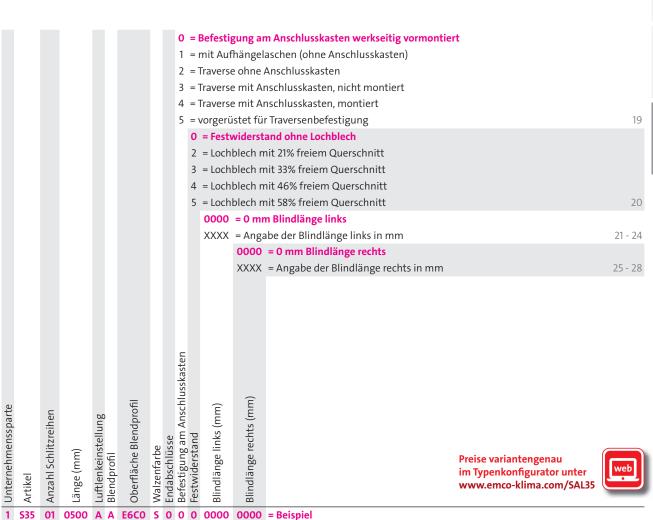
SAL35, 3-reihig mit Anschlusskasten

, 0		
Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	152	152
Maß H	262	262
Maß E	89,5	89,5
Maß F	99	99
Maß K	101	101
Maß M	126	126
Maß Ø D	158	158
Stutzen [Stk.]	1	2

SAL35, 4-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	184	184
Maß H	302	302
Maß E	121,6	121,6
Maß F	132	132
Maß K	134	134
Maß M	158	158
Maß Ø D	198	198
Stutzen [Stk.]	1	2

Stelle Variantenschlüssel für Typ SAL35 1 = emcoair S35 = Schlitzluftdurchlass SAL35 2 - 4 01 = 1 (Anzahl Schlitzreihen) 02 = 203 = 3 04 = 4 XX = Angabe der Schlitzanzahl in Stück 0500 = 500 mm Länge 1000 = 1000 mm XXXX = Angabe der Länge in mm (Standardschrittweite 100 mm) 7 - 10 A = Luftlenkeinstellung 1/A / F/6 B = alle C/DC = alle D/E D = alle 1/AE = alle F/6 $F = 2 \times 1/A / 1 \times F/6$ Y = Sondereinstellung A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) Y = Sonderprofil 12 E6C0 = naturfarbig eloxiert SELO = schwarz eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung S = Walzenfarbe schwarz W = weiß G = grau R = schwarz (gem. DIN EN ISO 5659-2) A = schwarz (UL94-V0) B = weiß (UL94-V0)Y = Sonderfarbe 17 0 = Endabschlüsse ohne A = Endplatte links B = Endplatte rechts C = Endplatte beidseitig D = Endwinkel links E = Endwinkel rechts F = Endwinkel beidseitig J = mit Gehrungsschnitt K = mit Gehrungsschnitt und Endplatte L = mit Gehrungsschnitt und Endwinkel



emcoair Schlitzluftdurchlässe - Typ SAL35

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Bitte bei Bestellung RAL nach Wahl = RAL-Ton (4-stellig) angeben, wenn der Glanzgrad 75-84% betragen soll.

E6C0

S 0 0 0

0500

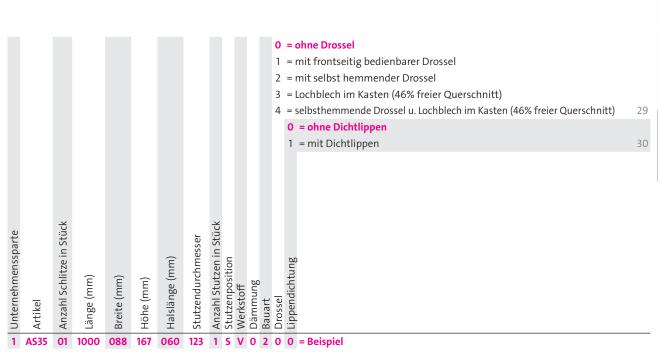
Ist ein NCS-Farbton gewünscht, bitte nur ONCS eintragen und den Farbton ebenfalls gesondert angeben.

0000 = Beispiel

Ist ein anderer Glanzgrad gewünscht, bitte nur RALG eingeben und den Farbton gesondert angeben.

Ist ein RAL-Pearl oder ein DB-Lack gewünscht, bitte bei Bestellung RALP respektive OODB eintragen und den Farbton gesondert angeben.

Va	Variantenschlüssel Standardanschlusskästen für Typ SAL35					Stelle							
1	= emc	oair									1		
	AS35	= A	nschlusskasten AK SAL35							2 - 5			
		01	= 1 (An	= 1 (Anzahl Schlitze in Stück)									
		02	= 2										
		03	= 3	= 3									
		04	= 4										
		XX	= Anga	abe de	r Schl	litzanz	zahl ir	ı Stü	ck		6 - 7		
			1000	= 100	0 mm	ı Läng	e						
			XXXX	= Ang	gabe d	pe der Länge in mm							
				088	= 88	8 mm Breite (1 Schlitz)							
				120	= 120	mm	(2 Sch	litze)				
				152	= 152	mm (3 Schl	itze))				
				184	= 184	mm	(4 Sch	litze)				
				XXX		gabe o					12 - 14		
										Schlitz)			
						= 242		•		•			
						= 262							
						= 302				·			
					XXX		_			e in mm	15 - 17		
										slänge incl. Profil			
						XXX		_		Halslänge in mm	18 - 20		
										m Stutzendurchmesser (1 Schlitz)			
										ım (2 Schlitze)			
										m (3 Schlitze)			
										nm (4 Schlitze)	21 22		
							***			be des Stutzendurchmessers in mm	21 - 23		
										Anzahl Stutzen in Stück)			
										Bei Längen über 1500 mm standardmäßig 2 Stutzen) gabe der Stutzenanzahl in Stück (max. 5 Stück)	24		
										Stutzenposition seitlich (symmetrisch)	24		
										oben (symmetrisch)			
										Sonderposition/-maß	25		
										= Werkstoff Stahl, verzinkt	26		
									v	0 = ohne Dämmung	20		
										1 = mit Dämmung innen (20 mm Mineralwolle)			
										8 = mit Dämmung außen (6 mm Armaflex)			
										9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex)	27		
										2 = Bauart Symmetrisch mit Traversenbefestigung, AK nicht montiert			
										3 = Asymmetrisch mit Traversenbefestigung, AK nicht montiert			
										4 = Symmetrisch ohne Traversenbefestigung, AK nicht montiert			
										5 = Asymmetrisch ohne Traversenbefestigung, AK nicht montiert			
										6 = Symmetrisch mit Traversenbefestigung, AK montiert			
										7 = Asymmetrisch mit Traversenbefestigung, AK montiert			
										8 = Symmetrisch ohne Traversenbefestigung, AK montiert			
										9 = Asymmetrisch ohne Traversenbefestigung, AK montiert	28		


emcoair Schlitzluftdurchlässe – Typ SAL35

Grundlagen und Systemvorteile

Drallluftdurchlässe

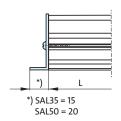
Deckenluftdurchlässe

Schlitzluftdurchlässe Typ SAL35

Stelle Variantenschlüssel Gehrungsecken für Typ SAL35 1 = emcoair GE35 = Gehrungsecke SAL35 2 - 5 01 = 1 (Anzahl Schlitze in Stück) 02 = 203 = 304 = 4 XX = Angabe der Schlitzanzahl in Stück 6 - 7 090 = 90° Gehrungswinkel XXX = Angabe des Gehrungswinkels in Grad 8 - 10 A = Luftlenkeinstellung 1/A / F/6 B = alle C/DC = alle D/ED = alle 1/AE = alle F/6 $F = 2 \times 1/A / 1 \times F/6$ Y = Sondereinstellung A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) Y = Sonderprofil 12 E6C0 = naturfarbig eloxiert SELO = schwarz eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung 13 - 16 S = schwarz (Farbe des Luftlenkelementes) W = weiß G = grau A = schwarz (UL94-V0) B = weiß (UL94-V0)Y = Sonderfarbe 17 0300 = 300 mm Schenkellänge links XXXX = Angabe der Schenkellänge links in mm 18 - 21 0300 = 300 mm Schenkellänge rechts XXXX = Angabe der Schenkellänge rechts in mm 22 - 25 Farbe des Luftlenkelementes Schenkellänge rechts (mm) Schenkellänge links (mm) Anzahl Schlitze in Stück Gehrungswinkel (°Grad) Oberfläche Blendprofil **-** Unternehmenssparte Luftlenkeinstellung Blendprofil Artikel **GE35** 01 090 A A E6C0 S 0300 0300 = Beispiel

Drallluftdurchlässe

Deckenluftdurchlässe


Typ SAL35

Zubehör SAL, SAL-V

Endabschlüsse

ten kombinierbar.

EW Endwinkel

Endabschlüsse müssen in der Bestel-

lung angegeben werden. Erfolgt keine

geliefert. Endwinkel sind mit Endplat-

Zum besseren Abgleich eines größeren SAL-Schlitzluftdurchlasssystems

lassen sich die Druckverluste des Luft-

Angabe, wird ohne Endabschlüsse

EP Endplatte

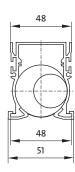
Kombinationen EW/EP sind möglich.

durchlasses alternativ durch Einsetzen eines Festwiderstandes in den Anschlussstutzen erhöhen. Festwiderstände sind als Lochblechscheiben mit einem freien Querschnitt von wahlweise 21%, 35%, 40%,

46 % oder 58 % ausgebildet.

Verbindungen

Die Verbindung der einzelnen Schlitze erfolgt über ein Verbindungs- und Zentrierprofil, die bei Bandausführungen standardmäßig mitgeliefert werden.

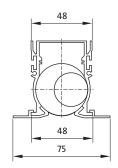

Konstruktiver Aufbau SAL50

Schlitzluftdurchlassprofil aus Aluminium-Strangpressprofil in 1- oder 2-reihiger Ausführung (durch Kombination ist auch eine mehrreihige Ausführung möglich). Abdeck- und Auflageprofile standardmäßig natureloxiert (E6/C0) mit Exzenterwalzen aus ABS.

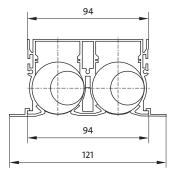
Lieferbare Größen L (mm):


600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 1950 Zwischenabmessungen sind möglich.

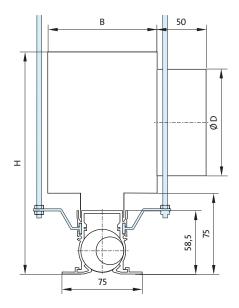
Schlitzbänder in beliebigen Längen können aus den Standardlängen zusammengesetzt werden. Die Verbindung erfolgt von der Raumseite her unsichtbar über Verbindungs- und Zentrierprofile.


SAL50/1

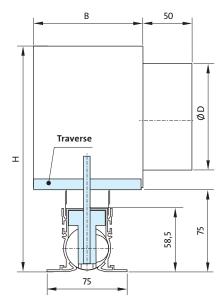
einschlitziges SAL-Profil mit Abdeckprofilen (ZS)


SAL50/2

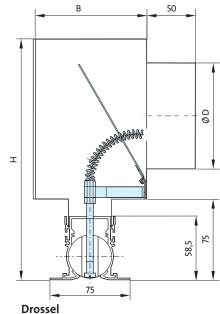
zweischlitziges SAL-Profil mit Abdeckprofilen (ZS)


SAL50/1

einschlitziges SAL-Profil mit Auflageprofilen (ZB)


SAL50/2

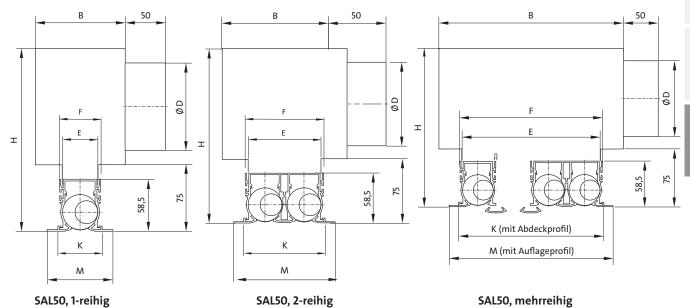
zweischlitziges SAL-Profil mit Auflageprofilen (ZB)


Aufhängung

Lose beigelegte Winkel, gelocht für bauseitige Gewindestangen M4 - M5.

Traversenbefestigung

Befestigung von Schlitzstücken bis zu 2 m Länge mit Anschlusskasten oder Einsatz in bauseitige Öffnung über Traverse.


emcoair Schlitzluftdurchlässe – Typ SAL50

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe Typ SAL50

mit Anschlusskasten

und Auflageprofil

SAL50, 1-reihig mit Anschlusskasten

mit Anschlusskasten

und Auflageprofil

Maße [mm]	bis 1500 mm	1600 bis 1950 mm
Maß B	101	101
Maß H	277	277
Maß E	38,4	38,4
Maß F	48	48
Maß K	51	51
Maß M	75	75
Maß Ø D	158	158
Stutzen [Stk.]	1	2

SAL50, 2-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 1950 mm
Maß B	148	148
Maß H	317	317
Maß E	85	85
Maß F	94	94
Maß K	97	97
Maß M	121	121
Maß Ø D	198	198
Stutzen [Stk.]	1	2

mit Anschlusskasten

SAL50, 3-reihig mit Anschlusskasten

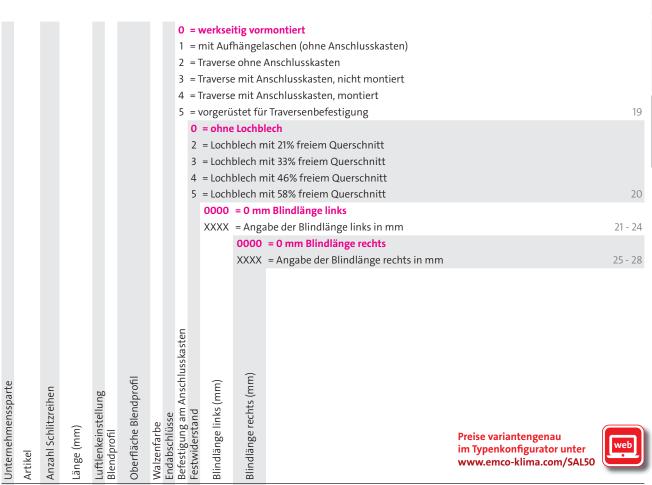
Maße [mm]	bis 1500 mm	1600 bis 1950 mm
Maß B	194	194
Maß H	341	341
Maß E	131,6	131,6
Maß F	141	141
Maß K	144	144
Maß M	168	168
Maß Ø D	222	222
Stutzen [Stk.]	1	2

SAL50, 4-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 1950 mm
Maß B	241	241
Maß H	367	367
Maß E	178,2	178,2
Maß F	187	187
Maß K	190	190
Maß M	215	215
Maß Ø D	248	248
Stutzen [Stk.]	1	2

Variantenschlüssel für Typ SAL50 1 = emcoair S50 = Schlitzluftdurchlass SAL50 2 - 4 01 = 1 (Anzahl Schlitzreihen) 02 = 203 = 3 04 = 4 5 - 6 0600 = 600 mm Länge 1050 = 1050 mm XXXX = Angabe der Länge in mm (Standardschrittweite 150 mm = Walzenlänge) 7 - 10 A = Luftlenkeinstellung 1/A / F/6 B = alle C/DC = alle D/ED = alle 1/AE = alle F/6 $F = 2 \times 1/A / 1 \times F/6$ Y = Sondereinstellung A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) Y = Sonderprofil 12 **E6C0** = naturfarbig eloxiert SELO = schwarz eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung 13 - 16 S = Walzenfarbe schwarz W = weiß G = grau A = schwarz (UL94-V0) B = weiß (UL94-V0) Y = Sonderfarbe 17 0 = Endabschlüsse ohne A = Endplatte links B = Endplatte rechts C = Endplatte beidseitig D = Endwinkel links E = Endwinkel rechts F = Endwinkel beidseitig J = mit Gehrungsschnitt K = mit Gehrungsschnitt und Endplatte L = mit Gehrungsschnitt und Endwinkel Y = Sonder-Endabschlüsse

Stelle


emcoair Schlitzluftdurchlässe – Typ SAL50

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

durchlässe Typ SAL50

Bitte bei Bestellung **RAL nach Wahl** = RAL-Ton (4-stellig) angeben, wenn der Glanzgrad 75-84% betragen soll.

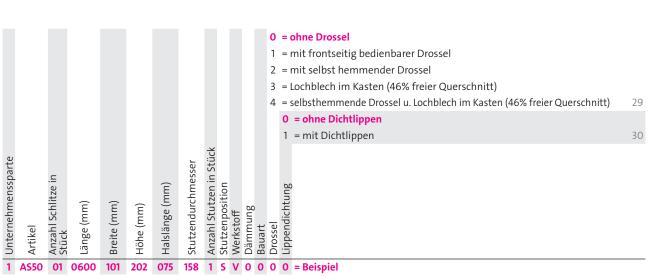
Ist ein NCS-Farbton gewünscht, bitte nur **ONCS** eintragen und den Farbton ebenfalls gesondert angeben.

E6C0 S 0 0 0 0000 0000 = Beispiel

Ist ein anderer Glanzgrad gewünscht, bitte nur **RALG** eingeben und den Farbton gesondert angeben. Ist ein RAL-Pearl oder ein DB-Lack gewünscht, bitte bei Bestellung **RALP** respektive **OODB** eintragen und den Farbton gesondert angeben.

Variantenschlüssel Standardanschlusskästen für Typ SAL50 1 = emcoair AS50 = Anschlusskasten AK SAL50 2 - 5 01 = 1 (Anzahl Schlitze in Stück) 02 = 203 = 304 = 4 XX = Angabe der Schlitzanzahl in Stück 6 - 7 0600 = 600 mm Länge 1050 = 1050 8 - 11 XXXX = Angabe der Länge in mm 101 = 101 mm Breite (1 Schlitz) 148 = 148 mm (2 Schlitze) 194 = 194 mm (3 Schlitze) 241 = 241 mm (4 Schlitze) XXX = Angabe der Breite in mm 12 - 14 277 = 277 mm Höhe (1 Schlitz) 317 = 317 mm (2 Schlitze) 341 = 341 mm (3 Schlitze) 367 = 367 mm (4 Schlitze) XXX = Angabe der Höhe in mm 15 - 17 075 = 75 mm Halslänge XXX = Angabe der Halslänge Stutzen in mm 18 - 20 158 = 158 mm Stutzendurchmesser (1 Schlitz) 198 = 198 mm (2 Schlitze) 222 = 222 mm (3 Schlitze) 248 = 248 mm (4 Schlitze) XXX = Angabe des Stutzendurchmessers in mm 21 - 23 1 = 1 (Anzahl Stutzen in Stück) 2 = 2 (Bei Längen über 1500 mm standardmäßig 2 Stutzen) X = Angabe der Stutzenanzahl in Stück S = Stutzenposition seitlich O = obenY = Sonderposition/-maß 25 V = Stahl, verzinkt 26 0 = ohne Dämmung 1 = mit Dämmung innen (20 mm Mineralwolle) 8 = mit Dämmung außen (6 mm Armaflex) 9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex) 27 2 = Bauart Symmetrisch mit Traversenbefestigung, AK nicht montiert 3 = Asymmetrisch mit Traversenbefestigung, AK nicht montiert 4 = Symmetrisch ohne Traversenbefestigung, AK nicht montiert 5 = Asymmetrisch ohne Traversenbefestigung, AK nicht montiert 6 = Symmetrisch mit Traversenbefestigung, AK montiert 7 = Asymmetrisch mit Traversenbefestigung, AK montiert 8 = Symmetrisch ohne Traversenbefestigung, AK montiert 9 = Asymmetrisch ohne Traversenbefestigung, AK montiert

Stelle


emcoair Schlitzluftdurchlässe – Typ SAL50

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe Typ SAL50

Stelle Variantenschlüssel Gehrungsecken für Typ SAL50 1 = emcoair GE50 = Gehrungsecke SAL50 2 - 5 01 = 1 (Anzahl Schlitze in Stück) 02 = 203 = 304 = 4 XX = 06 - 7 090 = 90° Gehrungswinkel XXX = Angabe des Gehrungswinkels in Grad 8 - 10 A = Luftlenkeinstellung 1/A / F/6 B = alle C/DC = alle D/ED = alle 1/AE = alle F/6 $F = 2 \times 1/A / 1 \times F/6$ Y = Sondereinstellung A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) Y = Sonderprofil 12 E6C0 = naturfarbig eloxiert SELO = schwarz eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung 13 - 16 S = Farbe des Luftlenkelementes schwarz W = weiß G = grau A = schwarz (UL94-V0) B = weiß (UL94-V0)Y = Sonderfarbe 17 0300 = 300 mm Schenkellänge links XXXX = Angabe der Schenkellänge links in mm 18 - 21 0300 = 300 mm Schenkellänge rechts XXXX = Angabe der Schenkellänge rechts in mm 22 - 25 Farbe des Luftlenkelementes Schenkellänge rechts (mm) Schenkellänge links (mm) Anzahl Schlitze in Stück Gehrungswinkel (°Grad) Oberfläche Blendprofil Unternehmenssparte Luftlenkeinstellung Artikel 01 090 A A E6C0 S 0300 0300 = Beispiel

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft durchlässe Typ SAL-V

emcoair Schlitzluftdurchlass SAL-V (motorisch verstellbar)

Der strahlverstellbare Schlitzluftdurchlass SAL-V ist ein linearer Luftdurchlass, der in 35 mm Profilbreite gefertigt wird.

Er besteht aus Aluminium Strangpressprofilen mit Walzen aus ABS und wird mit einem Anschlusskasten betrieben.

Der SAL-V wird je nach Einsatzfall und Luftmenge in mehrreihiger Ausführung hergestellt und kann zu Schlitzbändern beliebiger Länge zusammengefügt werden. Er erlaubt mit in den Profilen integrierten emco-Walzen eine ideale Anpassung der Ausblasrichtung an die Klimatisierungsaufgabe sowie die räumlichen Gegebenheiten

Die zur Realisierung einer bestimmten Funktion notwendige Walzenposition wird dabei bereits in der Fertigung eingestellt, kann aber auch im eingebauten Zustand noch nachträglich geändert werden.

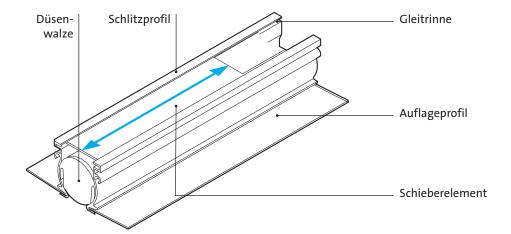
Schlitzluftdurchlässe bzw. Schlitzbänder können aufgrund der stabilen hochinduktiven Strahlführung in offene und geschlossene Deckensysteme auch bei variablen Volumenstromsystemen eingesetzt werden.

Einsatzbereiche

- In Komfortbereichen mit mittleren Raumhöhen im Heiz- und Kühlfall
- In Bereichen mit hohen Luftwechselzahlen und niedrigen Luftgeschwindigkeiten
- In Situationen, in denen der Durchlass in Form und Farbe den räumlichen Gegebenheiten angepasst werden muss
- Bei variablen Volumenstromsystemen
- In Büroräumen, Konferenzräumen, EDV-Räumen, Reinräumen, Kaufhäusern, Kinos, Theatern etc.

Produktvorteile

- Motorische Verstellung der Strahlrichtung von hochdiffus zu vertikal
- Anpassungsmöglichkeit an geänderte Raumnutzung
- Schneller Temperatur- und Geschwindigkeitsabbau im Kühlfall
- Regelbare Eindringtiefe
- Reproduzierbare Durchlasseinstellung
- Definierte, auftragsbezogene Durchlasseinstellung bei Fertigung
- Verstellmöglichkeiten auch nach Einbau
- Beständigkeit der Durchlasseinstellung bei Reinigung


Konstruktiver Aufbau

Der Schlitzluftdurchlass SAL-V besteht aus Aluminium-Strangpressprofilen, eingeschobenen 100 mm langen Exzenter- bzw. Düsenwalzen und einem Anschlusskasten.

Die speziell ausgebildeten Schlitzprofile verfügen über eine Gleitrinne, in der Schieberelemente in Achsrichtung frei beweglich geführt werden können. Die Schieberelemente sind so ausgebildet, dass sich jeweils an ein offenes Feld ein geschlossenes anschließt und umgekehrt.

Alle Schieberelemente sind über ein Übertragungsblech mit einer Zahnstange verbunden, die von einem Elektromotor gefahren wird.

Funktionsweise

Neben den üblichen Exzenterwalzen können in einigen Schlitzreihen Düsenwalzen angeordnet werden, deren strömungstechnische Eigenschaften sich wesentlich von denen der Exzenterwalzen unterscheiden. Über motorisch bewegte Schlitzschieber erfolgt ein Öffnen oder Schließen der Walzenreihen.

Damit sind Kühlfall (Horizontalstrahl) und Heizfall (Vertikalstrahl) nunmehr problemlos mit einer Anlage realisierbar.

Konstruktive Auslegung

Das beschriebene Wirkprinzip erfordert aus Platz- und Funktionsgründen einige Einschränkungen bezüglich der Geometrie:

- Der SAL-V sollte mindestens 1000 mm und max. 2000 mm lang sein.
- Der SAL-V muss mindestens 4 Schlitzreihen besitzen.
- Der SAL-V darf höchstens 10 parallele Schlitzreihen besitzen.

Zur Festlegung der notwendigen Gesamtschlitzzahl wird zunächst aus dem über einen Schlitzluftdurchlass auszublasenden Gesamtvolumenstrom und einer mittleren Schlitzbelastung (ca. 75 m³/hm) die "Auslegungsschlitzzahl" ermittelt. Aus untenstehender Tabelle werden dann die "Fertigungsschlitzzahl" bzw. die möglichen Kombinationen entnommen.

Auslegungs- schlitzanzahl	Fertigungs- schlitzanzahl
2	4
3	6
4	8
5	10

Ausführungen

- 1. Der SAL-V wird komplett mit Stellmotor geliefert. Für eventell notwendige Reparaturen wird der Anschlusskasten mit einer Revisionsöffnung versehen. Alternativ kann eine Traversenbefestigung gewählt werden.
- Zur Funktionskontrolle des Motors kann der SAL-V zusätzlich mit einem Endlagenschalter (mechanisch oder berührungslos) ausgerüstet werden.

Abmessungen / Zubehör

Die Abmessungen des SAL-V bzw. der Anschlusskästen richten sich nach der Fertigungschlitzanzahl und sind identisch denen des SAL35.

Das gilt in gleichem Maße für eventuell notwendige Zubehörteile (Seite 67) wie Endabschlüsse, Verbindungen für mehrere Schlitzauslässe sowie Auflage- und Abdeckprofile.

emcoair Schlitzluftdurchlässe - Typ SAL-V

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ SAL-V SLV = Schlitzluftdurchlass motorisch verstellbar SAL-V 2 - 4 Deckenluftdurchlässe 03 = 2 Schlitzreihen 05 = 406 = 608 = 8 5 - 6 1000 = 1000 mm Länge 1500 = 1500 mm 2000 = 2000 mm 7 - 10 K = 1x 1A/F6, 1x CD

A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) 12 E6C0 = naturfarbig eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung SELO = schwarz eloxiert, nur bei 3 Schlitzreihen 13 - 16 S = Walzenfarbe schwarz W = weiß G = grau R = schwarz (gem. DIN EN ISO 5659-2 A = schwarz (UL94-V0)B = weiß (UL94-V0)Y = Sonder 17 2 = Traverse ohne Anschlusskasten 3 = Traverse mit Anschlusskasten, nicht montiert 4 = Traverse mit Anschlusskasten, montiert 5 = vorgerüstet für Traversenbefestigung 18 0000 = 0 mm Blindlänge links XXXX = Angabe der Blindlänge links in mm 19 - 22 0000 = 0 mm Blindlänge rechts XXXX = Angabe der Blindlänge rechts in mm 23 - 26 Befestigung am Anschlusskasten Blindlänge rechts (mm) Oberfläche Blendprofil Unternehmenssparte Blindlänge links (mm) Anzahl Schlitzreihen Luftlenkeinstellung Walzenfarbe Länge (mm) Preise variantengenau im Typenkonfigurator unter Artikel

1000 K A E6C0 S 2 0000 0000 = Beispiel

www.emco-klima.com/SALV

emcoair Schlitzluftdurchlass SAL-S

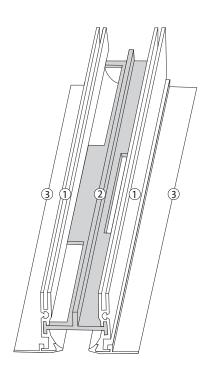
Der Schlitzluftdurchlass SAL-S ist ein linearer Luftdurchlass, der in 35 mm Profilbreite gefertigt wird. Er besteht komplett aus Aluminium-Strangpressprofilen und wird mit einem Anschlusskasten betrieben. Mit Schlitzluftdurchlässen des Typs SAL-S können viele Aufgaben bei der Raumklimatisierung im Komfortbereich gelöst werden.

Der erzeugte hochinduktive Horizontalstrahl mit raschem Temperaturund Geschwindigkeitsabbau gewährleistet die Realisierung der Behaglichkeitsanforderungen im Aufenthaltsbereich.

Einsatzbereiche

- In Komfortbereichen mit mittleren Raumhöhen im Heiz- und Kühlfall
- In Bereichen mit hohen Luftwechselzahlen und niedrigen Luftgeschwindigkeiten
- In Situationen, in denen der Durchlass in Form und Farbe den räumlichen Gegebenheiten angepasst werden muss
- Bei variablen Volumenstromsystemen
- In Büroräumen, Konferenzräumen, EDV-Räumen, Reinräumen, Kaufhäusern, Kinos, Theatern etc.

Produktvorteile


- In Radien verlegbar, kleinster Krümmungsradius r = 600 mm (n = 1), 2100 mm (n = 4)
- Komplette Ausführung aus Aluminium
- Keine Brandlasterhöhung im Deckenbereich
- Definierte, auftragsbezogene Durchlasseinstellung bei Fertigung
- Beständigkeit der Durchlasseinstellung bei Reinigung
- Zugfreie Einbringung der Luft im Kühlfall
- Niedriger Schallleistungspegel

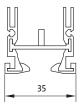
Drallluftdurchlässe

Deckenluftdurchlässe

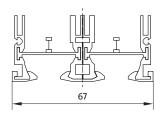
Schlitzluftdurchlässe Typ SAL-S

Konstruktiver Aufbau

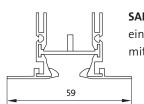
Der Schlitzluftdurchlass SAL-S besteht aus Aluminium-Strangpressprofilen (1) als Seitenprofile, einem Verbindungsprofil (2) mit definiert angeordneten Luftaustrittsöffnungen, je nach Einsatzfall sind auf die Seitenprofile (1) Abdeck- bzw. Auflageprofile (3) aufgeschoben.

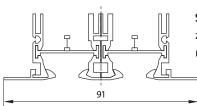

Die Abdeck- und Auflageprofile sind standardmäßig natur-eloxiert (E6CO) mit Verbindungsprofil.

Endabschlüsse und Verbindungselemente werden analog zum SAL35 ausgeführt.


Lieferbare Größen L (mm):

500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000 Zwischenabmessungen sind möglich. Schlitzbänder in beliebigen Längen können aus Standardlängen zusammengesetzt werden.


Die Verbindung erfolgt von der Raumseite her unsichtbar über Verbindungs- und Zentrierprofile.


SAL-S-1 einschlitziges SAL-Profil mit Abdeckprofilen

zweischlitziges SAL-Profil mit Abdeckprofilen

SAL-S-1 einschlitziges SAL-Profil mit Auflageprofilen

zweischlitziges SAL-Profil mit Auflageprofilen

Raumlufttechnische Daten SAL-S

Nenngröße [-]	L _{wa} [dB(A)]	$\dot{V}_{_0}[m^3/h]$	Δp [Pa]	Mindestabstand [m]	x _{krit} (diffus)
SAL-S-1	30	95	16	–	2,1
	35	115	23	3,3	2,6
	40	140	34	15,0	3,4
SAL-S-2	30	160	18	5,0	1,9
	35	195	25	11,2	2,4
	40	235	37	> 15,0	3,2
SAL-S-3	30	205	18	4,8	1,7
	35	245	26	9,8	2,1
	40	295	38	> 15,0	2,6
SAL-S-4	30	240	18	4,4	1,5
	35	290	26	8,5	1,9
	40	345	38	14,5	2,3

Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K; (Tabelle gilt für L=1 m)

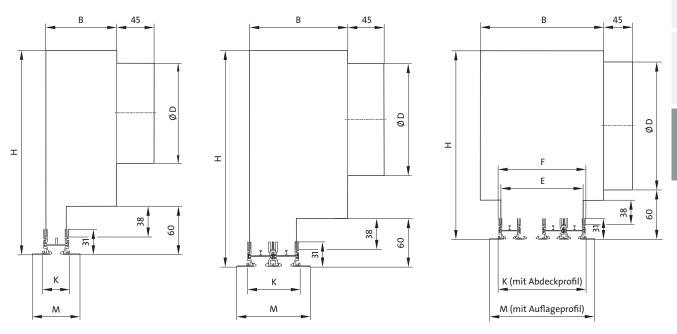
Funktionsweise

Die Luft trifft vertikal zwischen den Seitenprofilen auf das Verbindungsprofil und wird in Abhängigkeit von der Zahl der Lochungen in diesem Profil in eine Vielzahl von Einzelstrahlen aufgeteilt.

In der Standardausführung werden jeweils 92 mm lange Lochungen wechselseitig in das Profil eingebracht, so dass auch die Einzelstrahlen wechselseitig (hochdiffus) austreten. Eine definierte Positionierung der Lochungen innerhalb der Profile gewährleistet dabei einen horizontalen Luftaustritt.

In Abhängigkeit vom Einsatzfall können auf einer Profilseite auch mehrere Lochungen hintereinander angeordnet werden, um beispielsweise größere horizontale Eindringtiefen zu erreichen. Auf diese Weise lässt sich auch ein komplett einseitig austretender Deckenstrahl erzeugen.

Die Anzahl der Schlitzreihen ist vom Gesamtluftvolumenstrom abhängig. Es werden 50...100 m³/hm spezifische Luftvolumenströme (bezogen auf 1 m aktive Schlitzlänge) empfohlen: Die Anzahl der parallel verlaufenden Schlitzreihen ist aus strömungstechnischen und akustischen Gründen auf vier beschränkt.


emcoair Schlitzluftdurchlässe – Typ SAL-S

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe Tvp SAL-S

SAL-S, 1-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	88	88
Maß H	215	215
Maß E	25	25
Maß F	32	32
Maß K	35	35
Maß M	59	59
Maß Ø D	123	123
Stutzen [Stk.]	1	2

SAL-S, 2-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	120	120
Maß H	230	230
Maß E	57	57
Maß F	65	65
Maß K	67	67
Maß M	91	91
Maß Ø D	138	138
Stutzen [Stk.]	1	2

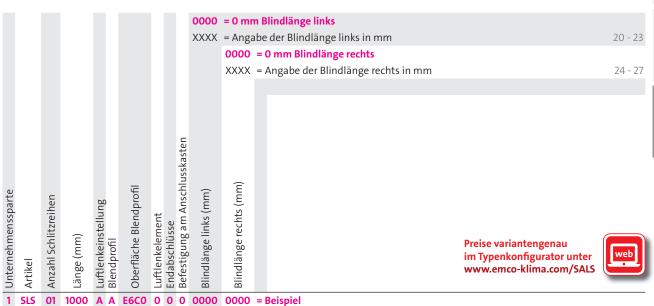
SAL-S, 3-reihig mit Anschlusskasten

, ,		
Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	152	152
Maß H	250	250
Maß E	89,5	89,5
Maß F	97	97
Maß K	100,5	100,5
Maß M	124,5	124,5
Maß Ø D	158	158
Stutzen [Stk.]	1	2

SAL-S, 4-reihig mit Anschlusskasten

Maße [mm]	bis 1500 mm	1600 bis 2000 mm
Maß B	184	184
Maß H	290	290
Maß E	122	122
Maß F	130	130
Maß K	133	133
Maß M	157,5	157,5
Maß Ø D	198	198
Stutzen [Stk.]	1	2

Stelle Variantenschlüssel für Typ SAL-S 1 = emcoair SLS = Schlitzluftdurchlass SAL-S 2 - 4 01 = 1 (Anzahl Schlitzreihen) 02 = 203 = 304 = 4 XX = Angabe der Schlitzreihen in Stück 1000 = 1000 mm Länge XXXX = Angabe der Länge in mm 7 - 10 A = Luftlenkeinstellung 1/A / F/6 B = C/DD = 1/AE = F/6S = Abluft (Standard) A = Auflageprofil (ZB) B = Auflageprofil (ZB), vorgebohrt C = Abdeckprofil (ZS) Y = Sonderprofil 12 E6C0 = naturfarbig eloxiert 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung SELO = schwarz eloxiert, nicht bei 1 Schlitzreihe 13 - 16 0 = Luftlenkelement Aluminium, unbehandelt S = schwarz W = weiß 17 0 = Endabschlüsse ohne A = Endplatte links B = Endplatte rechts C = Endplatte beidseitig D = Endwinkel links E = Endwinkel rechts F = Endwinkel beidseitig J = mit Gehrungsschnitt (nur bei 1 Schlitzreihe) K = mit Gehrungsschnitt und Endplatte L = mit Gehrungsschnitt und Endwinkel Y = Sonder-Endabschlüsse 0 = Befestigung am Anschlusskasten werkseitig vormontiert 1 = mit Aufhängelaschen (ohne Anschlusskasten) 2 = Traverse ohne Anschlusskasten 3 = Traverse mit Anschlusskasten, nicht montiert 4 = Traverse mit Anschlusskasten, montiert 5 = vorgerüstet für Traversenbefestigung 19


emcoair Schlitzluftdurchlässe – Typ SAL-S

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

durchlässe Typ SAL-S

Bitte bei Bestellung **RAL nach Wahl** = RAL-Ton (4-stellig) angeben, wenn der Glanzgrad 75-84% betragen soll.

Ist ein anderer Glanzgrad gewünscht, bitte nur **RALG** eingeben und den Farbton gesondert angeben. Ist ein NCS-Farbton gewünscht, bitte nur **ONCS** eintragen und den Farbton ebenfalls gesondert angeben.

Ist ein RAL-Pearl oder ein DB-Lack gewünscht, bitte bei Bestellung **RALP** respektive **00DB** eintragen und den Farbton gesondert angeben. In den Spezifikationen dieses Variantenschlüssels sind nur Auswahlmöglichkeiten für lineare Schlitzduchlässe (Typ SAL-S) <u>ohne Radien</u> enthalten. Anforderungen nach radialen Schlitz-

Anforderungen nach radialen Schlitzdurchlässen (Typ SAL-R) bearbeiten wir auf Anfrage.

Stelle Variantenschlüssel Standardanschlusskästen für Typ SAL-S 1 = emcoair ASOS = Anschlusskasten AK SAL-S 2 - 5 01 = 1 (Anzahl Schlitzreihen in Stück) 02 = 203 = 304 = 4XX = Angabe der Schlitzreihen in Stück 6 - 7 1000 = 1000 mm Länge XXXX = Angabe der Länge in mm 8 - 11 088 = 88 mm Breite (1 Schlitzreihe, ohne Innendämmung) 120 = 120 mm (2 Schlitzreihen, ohne Innendämmung) 152 = 152 mm (3 Schlitzreihen, ohne Innendämmung) 184 = 184 mm (4 Schlitzreihen, ohne Innendämmung) XXX = Angabe der Breite in mm 12 - 14 215 = 215 mm Höhe (1 Schlitzreihe) 230 = 230 mm (2 Schlitzreihen) 250 = 250 mm (3 Schlitzreihen) 290 = 290 mm (4 Schlitzreihen) XXX = Angabe der Höhe in mm 15 - 17 060 = 60 mm Halslänge incl. Profil XXX = Angabe der Halslänge incl. Profil in mm 18 - 20 123 = 123 mm Stutzendurchmesser (Typ 01) 138 = 138 mm (Typ 02)158 = 158 mm (Typ 03)198 = 198 mm (Typ 04)21 - 23 XXX = Angabe des Stutzendurchmessers in mm 1 = 1 (Anzahl Stutzen in Stück) 2 = 2 (Bei Längen über 1500 mm standardmäßig 2 Stutzen) X = Angabe der Stutzenanzahl in Stück 24 S = Stutzenposition seitlich (Anordnung symmetrisch) O = oben (Anordnung symmetrisch) Y = Sonderposition/-maß 25 V = Werkstoff Stahl, verzinkt 26 0 = ohne Dämmung 1 = mit Dämmung innen (20 mm Mineralwolle) 8 = mit Dämmung außen (6 mm Armaflex) 9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex) 27 0 = symmetrisch 1 = asymmetrisch 28 0 = ohne Drossel 1 = mit frontseitig bedienbarer Drossel 2 = mit selbst hemmender Drossel 29 0 = ohne Dichtlippen Anzahl Stutzen in Stück Stutzenposition Werkstoff Dämmung Bauart Drossel 1 = mit Dichtlippen 30 Unternehmenssparte Anzahl Schlitze in Stück Halslänge (mm) Lippendichtung Stutzendurch-messer Breite (mm) -änge (mm) Höhe (mm) **ASOS** 01 1000 088 155 060 123 1 S V 0 0 0 0 = Beispiel

emcoair Schlitzluftdurchlässe – Typ SAL-S

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Stelle Variantenschlüssel Gehrungsecken für Typ SAL-S 1 = emcoair GEOS = Gehrungsecke SAL-S 2 - 5 01 = 1 (Anzahl Schlitzreihen in Stück) 02 = 203 = 304 = 4 XX = Angabe der Schlitzreihen in Stück 090 = 90° Gehrungswinkel XXX = Angabe des Gehrungswinkels in Grad 8 - 10 A = Luftlenkeinstellung 1/A / F6

```
B = C/D
                          D = 1/A
                          E = F/6
                          S = Abluft (Standard)
                          Y = Sondereinstellung
                              A = Auflageprofil (ZB)
                              B = Auflageprofil (ZB), vorgebohrt
                              C = Abdeckprofil (ZS)
                              Y = Sonderprofil
                                                                                                                                                                                  12
                                  E6C0 = naturfarbig eloxiert
                                  SELO = schwarz eloxiert
                                  9010 = RAL-Ton 9010 glänzend
                                  XXXX = RAL-Classic nach Wahl
                                 ONCS = NCS-Ton
                                 00DB = DB-Lack
                                  RALP = RAL-PEARL-Ton
                                  RALG = RAL-Classic-Ton
                                  YYYY = Sonderlackierung
                                                                                                                                                                             13 - 16
                                           0 = Aluminium, unbehandelt
                                                                                                                                                                                  17
                                           Y = Sonderfarbe
                                               0300 = 300 mm Schenkellänge links
                                               XXXX = Angabe der Schenkellänge links in mm
                                                                                                                                                                             18 - 21
                                                        0300 = 300 Schenkellänge rechts
                                                        XXXX = Angabe der Schenkellänge rechts in mm
                                                                                                                                                                            22 - 25
                                          Oberfläche Luftlenkelement
                                                          Schenkellänge rechts (mm)
                                                 Schenkellänge links (mm)
1 Unternehmenssparte
Artikel
Anzahl Schlitze in Stück
Gehrungswinkel (°Grad)
V Luftlenkeinstellung
Blendprofil
Oberfläche Blendprofil
Oberfläche Luftlenkelem
Schenkellänge inks (mm
                    Gehrungswinkel (°Grad)
              Anzahl Schlitze in Stück
                                    Oberfläche Blendprofil
```


Rundrohrluftdurchlässe.

Der Wunsch des Architekten ist es, die technischen Einrichtungen, die zur Klimatisierung eines Raumes benötigt werden, entweder unsichtbar zu integrieren oder sie explizit zu zeigen, um den technischen und modernen Anspruch seines Gebäudes zum Ausdruck zu bringen. Für diesen Fall hat emco Klima das Rundrohrluftdurchlasssystem erfunden. Dieses System erlaubt, unter Einsatz verschiedenster Materialien und Oberflächenfarben, die Luftführung in einem nahezu beliebig gestaltbaren Rundrohrsystem. Dabei ist thermische Behaglichkeit ebenso garantiert wie der Luftvolumenstromabgleich im Gesamtsystem. Klar definiert treten die Luftmengen an den Stellen aus, wo sie benötigt werden und dringen genau so weit in den Raum ein, wie es die emco Klima Ingenieure geplant haben.

Sollen die Rohre auch aus größeren Höhen zur Heizung, Lüftung und Kühlung eingesetzt werden, können sie mit einer zusätzlichen Motorverstellung ausgerüstet werden, um die Strahlführung zwischen Kühl- und Heizfall zu unterscheiden.

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Inhalt

Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau und Funktionsweise
Steuerung
Raumlufttechnische Daten90
Seitensicht u. Schnitt, Maße u. Gewichte 91
Der RRA in ovaler Form
Funktionsweise Typ RRA-V
emcoMFR-TDR – Temperaturdifferenzregelung für Typ RRA-V
Formteile/Zubehör96
Hydraulischer Abgleich im emco Klima Rundrohrsystem
Variantenschlüssel:
Rundrohre
Glattrohre

Rundrohrluftdurchlass RRA und RRA-V

Der Rohrdurchlass RRA/RRA-V ist ein Komfortdurchlass in Sichtmontage, der gleichzeitig zur individuellen Raumgestaltung genutzt werden kann.

Er ist insbesondere dann geeignet, wenn Technik nicht nur funktionales, sondern gleichzeitig auch gestalterisches Element ist.

Er ist sowohl im Komfort- als auch im Industriebereich einsetzbar. Durch die mit dem Luftdurchlass realisierbaren Strahlformen kann nahezu jede Klimatisierungsaufgabe problemlos und komfortabel gelöst werden.

In der Ausführung RRA-V ist der Rundrohrdurchlass auch motorverstellbar.

Einsatzbereiche

- Komfortbereich
- Hallenbelüftung
- Fertigungsbereiche
- Laborbereiche
- Arbeitsschutz
- Qualitätssicherung

Produktvorteile

- Beliebige Einstellung der Strahlrichtung durch die patentierte Exzenterwalze
- Leichte Anpassungsmöglichkeit an geänderte Raumnutzung
- Kombination aller Strahlformen in nur einem Durchlass
- Für sensible oder belastete Bereiche auch in V2A-Ausführung und mit Innenlackierung erhältlich
- Schneller Temperatur- und Geschwindigkeitsabbau im Kühlfall
- Einbau an jeder Stelle eines Rohrleitungssystems möglich (horizontal, vertikal, ...)
- Anschließbar an jedes Rohr oder Formstück ab DN 150 nach ISO
- Individuelle Farbgebung

Konstruktiver Aufbau

Der lineare Rohrdurchlass besteht aus einem Glattrohrelement mit Kreis-querschnitt, auf dessen äußeren Umfang mehrere (die Anzahl wird im wesentlichen nur durch den Rohrdurchmesser begrenzt) Schlitzschienen in Achsrichtung montiert sind. Die Schlitzschienen schließen bündig mit der Rohraußenwand ab und sind mit 100 mm langen Exzenterwalzen

bestückt, die einzeln drehbar sind. Je nach Einsatzfall können in den Rundrohrluftdurchlässen Festwiderstände eingesetzt werden, die über eine Änderung der wirksamen Strömungsfläche auf die Austrittsvolumina wirken.

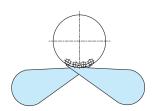
Für die Montage sind in den Rohrabschnitten beidseitig Bohrungen angebracht, die für die Aufnahme von Gewindestangen vorgesehen sind.

Funktionsweise

Der lineare Rohrdurchlass kann an jeder Stelle (z. B. Teilstück eines Systems, Endstück mit Enddeckel) und in jeder Lage (z. B. horizontal, vertikal) eines Rohrleitungssystems eingebaut werden. Der Rohrdurchlass wird in Längsrichtung durchströmt, der Luftaustritt erfolgt zunächst senkrecht dazu mit nachfolgender weiterer Ablenkung entsprechend der jeweiligen Walzenstellung.

Mehrere Luftdurchlässe in einem Rohrstrang sind möglich, wobei bei mehreren Durchlässen ein hydraulischer Abgleich über die Systemlänge mittels Festwiderständen erfolgen sollte (siehe dazu: "Hydraulischer Abgleich", S. 99-101).

Drallluftdurchlässe


Deckenluftdurchlässe

Schlitzluftdurchlässe

Steuerung der Luftstrahlrichtung

Die exzentrisch gelagerte Walze bildet

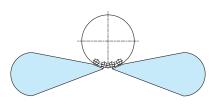
mit dem Schlitzprofil einen Strömungskanal, der die Luft auf Kreisbahnen führt. In der Nähe des Walzenkörpers stellt sich ein hoher Unterdruck bei großen Strömungsgeschwindigkeiten ein. Dadurch wird der austretenden Luft eine Richtung aufgeprägt, die für die weitere Strahlbildung maßgebend ist. Die Gestaltung des Walzenkörpers erlaubt eine stufenlose Richtungsänderung um 180°.

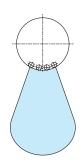
Steuerung der Luftstrahlrichtung

B/C

C/D

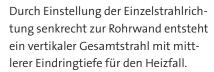
Ablesebereich

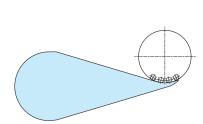

max. Volumenstrom

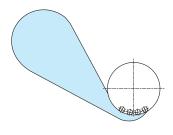

Elk Ello

DIE

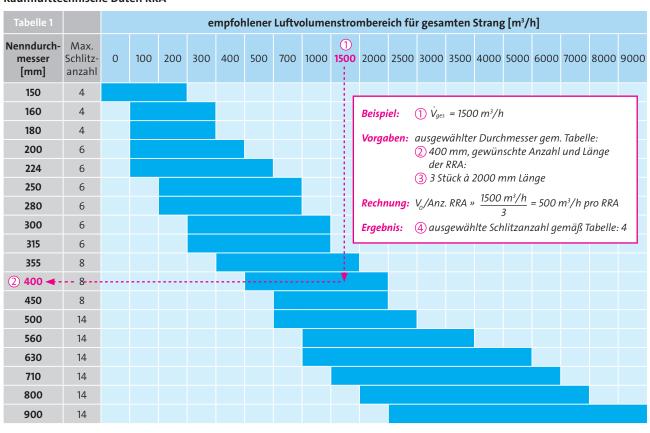
den Zusammenhang zwischen Walzenstellung und resultierenden Strahlrichtungen bei einer Walze. Werden mehrere Schlitzschienen mit Exzenterwalzen parallel zueinander angeordnet, kann durch Kombination verschiedener Walzenstellungen jede beliebige Strahlform bzw. Strahlrichtung und -ausbreitung erzeugt werden.


Die nebenstehende Grafik beschreibt




Zweiseitig ausblasende Strahlform, die sich aus einer Vielzahl von Einzelstrahlen zusammensetzt. Es erfolgt eine intensive Induktion der Raumluft bei kleinen Wurfweiten.

Zweiseitig ausblasende Strahlform mit zwei ausgeprägten Hauptströmungsrichtungen. Es wird eine größere Wurfweite erreicht.


Durch entsprechende Walzenstellung wird eine Strahleinschnürung bewirkt, die einen Vertikalstrahl mit geringer Induktion und deutlich höherer Eindringtiefe erzeugt.

Durch die stark gefächerte, einseitig gerichtete Strahlform und die geringe vertikale Ausbreitung ist diese Einstellung insbesondere für Deckenhöhen bis 3 m geeignet. Deckenhindernisse (Lampen, Vorsprünge usw.) werden vom Strahl umspült.

Werden alle Walzen auf maximale Strahlumlenkung in gleicher Richtung eingestellt, so legt sich der Zuluftstrahl an die Rohrwand an und erlaubt somit eine extreme Umlenkung der eingebrachten Luft.

Raumlufttechnische Daten RRA

Tabelle 2	Schlitzanzahl									
Rohrlänge [mm]	2	4 4	6	8	10	12	14			
Schlitzlänge [mm]	empfohlener Luftvolumenstrombereich pro RRA [m³/h]									
1000 / 800	110	220	340	450	560	670	780			
1500 / 1300	180	360	550	730	910	1100	1270			
3 2000 / 1700	240	480	710	950	1190	1430	1670			

Weitere Abmessungen und Schlitzanzahlen auf Anfrage.

Alternativ ist auch eine Ausführung als Ovalrohrsystem lieferbar. Technik auf Anfrage.

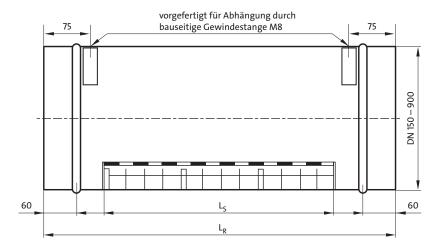
Tabelle 1 zeigt eine Auswahl möglicher Rohrdurchmesser in Abhängigkeit vom Gesamtvolumenstrom eines Rundrohrstranges. Aus Tabelle 2 kann die Anzahl der nötigen Rundrohrluftdurchlässe im Strang in Abhängigkeit der Schlitzanzahl ermittelt werden. Zu beachten ist jedoch, dass die Rohrlängen 1700 mm und 2000 mm aus Stabilitäts- und Handhabungsgründen nur bis zu einem Rohrdurchmesser von 450 mm gefertigt werden.

Die Schlitzelemente werden standardmäßig symmetrisch gegenüber der Schweißnaht/Falz des Rohres angeordnet. Je nach Einsatzfall sind andere Anordnungen denkbar und möglich. Sie sind bei der Bestellung anzugeben. Die empfohlenen Luftvolumenströmepro RRA in Tabelle 2 basieren auf einem durchschnittlichen Aufschlag von 70 m³/h je Meter aktiver Schlitzlänge. Dies ist ein aus akustischen Gründen empfohlener Wert für den reinen Komfortbereich.

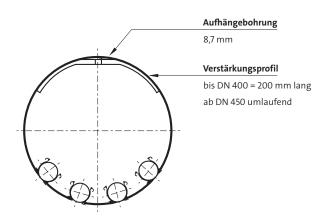
Je nach akustischen Anforderungen kann dieser Wert jedoch deutlich überschritten werden. Beim Einsatz der linearen Rohrdurchlässe im Kühlfall darf eine Mindestbeaufschlagung von 50 m³/h je Meter aktiver Schlitzlänge nicht unterschritten werden, da ansonsten die gewünschte Strahlausbreitung nicht gewährleistet ist (zu geringer Austrittsimpuls bei gleichzeitig vorhandener Temperaturdifferenz).

emcoair Rundrohrluftdurchlässe – Typ RRA/RRA-V

Grundlagen und Systemvorteile


Drallluftdurchlässe

Deckenluftdurchlässe


Schlitzluftdurchlässe

Rundrohrluftdurchlässe Typ RRA/ RRA-V

Seitenansicht

Schnittdarstellung

Maße und Gewichte Typ RRA*

Rohr- Länge L _R	Schlitz- Länge L _S	zuna	ichts- ihme chlitz	DN 160 mm	DN 180 mm	DN 200 mm	DN 224 mm	DN 250 mm	DN 280 mm	DN 300 mm	DN 315 mm	DN 355 mm	DN 400 mm	DN 450 mm	DN 500 mm	DN 560 mm	DN 630 mm	DN 710 mm	DN 800 mm	DN 900 mm
[mm]	[mm]	[kg]*	[kg]**					Ble	chstärl	ke 0,88	mm						Ble	chstär	ke 1,00	mm
1000	800	0,36	0,34	2,99	3,36	3,72	4,17	4,65	6,94	7,43	7,80	8,78	9,89	11,13	14,79	16,27	18,00	19,96	22,19	24,66
1500	1300	0,60	0,55	-	÷	-	6,24	6,95	10,39	11,10	11,68	13,16	14,80	16,68	20,96	23,18	25,77	28,72	32,05	35,70
1750	1500	0,68	0,63	-	·	6,50	7,27	8,11	12,11	12,98	13,63	15,35	17,29	19,44	÷	÷	-	÷	÷	-
2000	1700	0,82	0,76	-	-	7,42	8,31	9,27	13,83	14,83	15,57	17,54	19,75	22,23	-	-	-	-	-	-

^{*} bei Blechstärke 0,88 mm ** bei Blechstärke 1,00 mm

Der ORA in ovaler Form

Oftmals reichen Deckenhöhen nicht, um ein Rundrohrsystem mit dem nötigen Durchmesser zu installieren.In diesen Fällen sind ORA Ovalrohrsysteme eine gute Alternative. emco Klima bietet für jeden handelsüblichen Nenndurchmesser von Rundrohren ein Ovalrohrsystem mit dem äquivalenten hydraulischen Querschnitt an.

Die Tabelle zeigt eine Übersicht der Abmessungen mit der jeweils maximal möglichen Anzahl an Schlitzreihen pro Auslass.

Da in Ovalrohrsystemen die Schlitzreihen sowohl im flachen Bereich (Unterseite bzw. Oberseite) des Auslasses, als auch in den gerundeten Seitenflächen untergebracht werden können,

ergibt sich eine Vielzahl an möglichen Luftführungen, die der Raumsituation optimal angepasst werden können. Aufgrund der äquivalenten hydraulischen Durchmesser der Ovalrohre gelten für die Auslegung die technischen Daten der entsprechenden Rundrohre im Nenndurchmesser gemäß Tabelle.

Abmessungen Typ ORA oval

Rundrohr		Ovalrohr					
Nenndurchmesser [mm]	Höhe h [mm] Breite b [mm] maximale Schlitzan						
200	150	300	8				
250	150	400	12				
315	150	630	12				
355	200	520	12				
400	250	580	15				
450	250	740	15				
500	300	790	15				
560	350	840	15				
630	350	1000	20				
710	450	1020	20				
800	500	1160	20				

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe Typ RRA/ RRA-V

Prinzipdarstellung der Funktionsweise Typ RRA-V

Funktionsweise Typ RRA-V

Der RRA-V ist ein motorisch verstellbarer Auslass, durch den zwei unterschiedliche Stahlformen mit einem Auslass erzeugt werden können. Diese Strahlformen können durch die Einstellung der Exzenterwalzen vorab beliebig ausgewählt werden. Besonders in großen Einbauhöhen eignet sich der RRA-V, um beispielsweise einen definierten Kühl- bzw. Heizstrahl mit nur einem System zu erzeugen. Daher verfügt der RRA-V über eine größere Anzahl an Schlitzreihen als ein RRA bei gleichem Gesamtluftvolumenstrom.

Über motorisch bewegte Schlitzschieber erfolgt ein Öffnen oder Schließen der Walzen. Der lineare Rohrdurchlass kann an jeder Stelle (z.B. Teilstück eines Systems, Endstück mit Enddeckel) eines Rohrleitungssystems in horizontaler Lage eingebaut werden. Der Rohrdurchlass wird in Längsrichtung durchströmt, der Luftaustritt erfolgt zunächst entsprechend der jeweiligen Walzenstellung bzw. Stellung der Schlitzschieber. Bei mehreren Rundrohrauslässen in einem Strang muss ein Druckabgleich über die Systemanlage erfolgen.

Netzteil Typ emcoMFR-Z-NT-6W

Leistungsteil Typ emcoMFR-Z-LT

Raumtemperaturfühler Typ emcoMFR-Z-RT

Temperaturfühler Typ emcoMFR-Z-TF

emcoMFR-TDR – Temperaturdifferenzregelung für Typ RRA-V

Wenn man ein manuelles Eingreifen bei der Umstellung zwischen Heizund Kühlbetrieb gänzlich umgehen möchte, kann ein Systemstrang aus elektromotorisch verstellbaren Durchlässen vom Typ RRA-V um die emcoMFR Temperaturdifferenzreglung (TDR) erweitert werden.

Die Temperaturdifferenzregelung emcoMFR-TDR dient zur Ansteuerung elektromotorisch verstellbarer Luftdurchlässe in Abhängigkeit von der Temperaturdifferenz zwischen der Zu- und Raumluft. Der Regler arbeitet eigenständig und muss nicht überwacht werden. Durch die stetige Kontrolle der Zu- und Raumlufttemperatur werden die Exzenterwalzen der Rundrohrluftdurchlässe für den Heizoder Kühlbetrieb automatisch geöffnet oder geschlossen.

Standardmäßig besitzt die emcoMFR-TDR zwei unterschiedliche Sollwert-kurven, die werkseitig entsprechend des anzusteuernden Luftdurchlasses, des Motortyps und der Planungsvorgabe programmiert werden. Grundsätzlich können an die emcoMFR-TDR bis zu 10 Stellmotoren im Parallelbetrieb an jedem Ausgang angeschlossen werden.

Die Ansteuerung erfolgt stetig über 0...10V oder 2-Punkt über Relaiskontakte.

Die emcoMFR-TDR besteht aus diesen Komponenten:

- emcoMFR-Z-NT-6W (Netzteil)
- emcoMFR-Z-LT (Leistungsteil)
- emcoMFR-Z-RT (Raumtemperaturfühler)
- emcoMFR-Z-TF (Temperaturfühler)

Es besteht auch die Möglichkeit, spezielle Applikationen umzusetzen. Fragen Sie bitte hierzu in unserem Stammhaus an.

Technische Daten der emcoMFR-TDR:

- 8 analoge Ausgänge für je max.10 Stellmotoren
- 4 digitale Eingänge (potentialfrei) zur externen Ansteuerung (Ausgang 0%, Kennlinie 1 aktiv, Kennlinie 2 aktiv, parametrierter Fixwert aktiv)
- 4 analoge Eingänge (PT1000) zur Erfassung der Raum- und Zulufttemperatur (Einzel- und Mischtemperatur parametrierbar)
- Alle Stellmotoren für 0-10V-Ansteuerung können angeschlossen werden.
- Betriebsspannung DC 24V
- Relaiskontakt zur Umschaltung von Heiz und Kühlfall (3-Punkt-Regelung)
- USB-Service-Schnittstelle zur Parametrierung

Parametriersoftware

- Anpassung der werkseitig vorgenommenen Einstellungen (Kennlinien) an spezielle Anlagengegebenheiten
- Anzeigen der Anlagendaten und Betriebswerte

emcoair Rundrohrluftdurchlässe – Typ RRA/RRA-V

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluf durchlässe Typ RRA/ RRA-V

Formteile / Zubehör

Der Rundrohrluftdurchlass RRA wird in den angegebenen Rohrlängen von DN 150 bis DN 900 nach ISO geliefert. Standardmäßig werden die RRA Rundrohrauslässe im Formteilmaß gefertigt, auf Wunsch ist aber auch eine Ausführung im Rohrmaß möglich. Da die Rundrohrluftdurchlässe in der Regel im Sichtbereich montiert sind, empfiehlt es sich u. a. aus optischen Gründen, alle in diesem Bereich angeordneten Systemteile in der gleichen Ausführung und Lackierung zu verwenden.

Glattrohre

Glattrohre können in den gleichen Abmessungen wie die Rundrohrluftdurchlässe geliefert werden. Standardmäßig werden auch Glattrohre im Formteilmaß gefertigt, die Verbindung zweier Glattrohre erfolgt über Steckmuffen. Auf Wunsch können Glattrohre auch im Rohrmaß gefertigt werden.

Glattrohre mit Längen L < 500 mm werden standardmäßig als Muffen ohne Sicken gefertigt.

Formteile

Es können alle standardmäßigen Formteile wie Bögen, Abzweige, Reduzierungen usw. geliefert werden. Bögen können in allen Nenngrößen als Segmentbögen geliefert werden, bis DN 315 ist auch eine Anfertigung aus gepressten Halbschalen möglich. Als Abschluss des Rohrsystems werden Enddeckel für Rohr- oder Formteilabmessung gemäß ISO empfohlen. In einer Sonderausführung kann das Ende eines Rundrohrluftdurchlasses unter einem beliebigen Winkel abgeschrägt werden. Der Enddeckel ist dann eingeschweißt

Verbindungen

Als Standardverbindung zwischen Formteilen, Rundrohrluftdurchlässen und Glattrohren werden Steckmuffen, passend zum gewählten Rohrdurchmesser, empfohlen. Weitere mögliche Verbindungsarten sind Spannringe zum Verbinden von Rohren mit Rohrmuffen und innenliegendem Dichtungsband.


Materialien

Sämtliche Rohre und Formteile können in folgenden Ausführungen mit Lackierung nach RAL geliefert werden:

- verzinkter Stahl
- Aluminium
- nicht rostender Stahl

Drallluftdurchlässe

Sonstige Formteile auf Anfrage. Glattrohre siehe Variantenschlüssel Seite 104.

Einheitliche Optik trotz Sonderbauteilen im Sichtbereich

Rundrohrsysteme eignen sich hervorragend für den Einsatz im Sichtbereich, wenn man aus ästhetischen Gründen nicht auf Rechteckkanäle zurückgreifen möchte. Ein wesentliches Merkmal von Rundrohrsystemen ist eine einheitliche Optik, die durch einen gleichbleibenden Rohrdurchmesser, sowie eine gleichbleibende Anzahl an Schlitzdurchlässen in den

Rundrohren hervorgerufen wird.
Um diese einheitliche Optik nicht zu stören, werden notwendige Schalldämpfer häufig außerhalb des Sichtbereiches oder sogar außerhalb des zu belüftenden Raumes eingeplant.
Oftmals besteht aber aus architektonischen Gründen kein Platz, um diese Komponenten vom Rundrohrstrang zu trennen.

Schalldämpfer

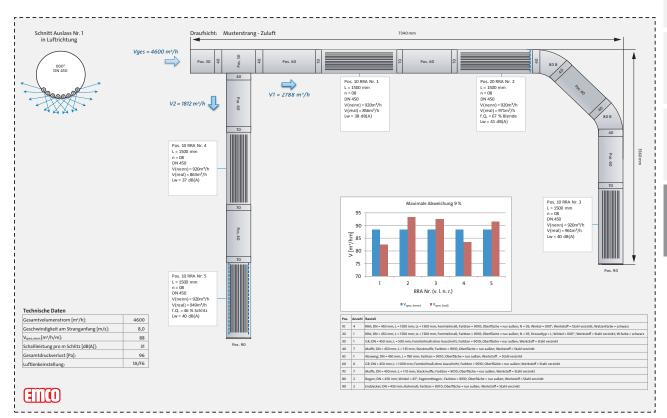
Deshalb bietet emco Klima spezielle Schalldämpfer an, die über eine innenliegende Dämmung verfügen und sich daher nahtlos in die Optik des Stranges einfügen. Somit bleibt das Gesamtbild des Rundrohrstranges harmonisch und ausgewogen.

Die Revisionsmuffe

Gemäß der aktuellen Hygieneanforderungen (VDI 6022) gilt: "Alle (luftführenden) Komponenten (einer RLT-Anlage) müssen für die erforderlichen Inspektions- und Reinigungsarbeiten zugänglich sein."

Der Wunsch nach einheitlicher Optik des Rundrohrstranges im Sichtbereich, die nicht durch Revisionsöffnungen gestört wird, ist zumeist der Grund für eher stiefmütterliche Lösungen dieser Problematik. emco Klima bietet aus diesem Grund spezielle Revisionsmuffen an, die aus zwei Halbschalen bestehen, die seitlich klappbar und mittels einfacher Verschlussmechanismen leicht zugänglich sind. Diese Revisionsmuffen können in regelmäßigen Abständen zwischen den Rundrohrluftdurchlässen im

Strang installiert werden und fügen sich nahtlos in die Optik des Rundrohrstranges ein.



Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

> Rundrohrluft lurchlässe Typ RRA/

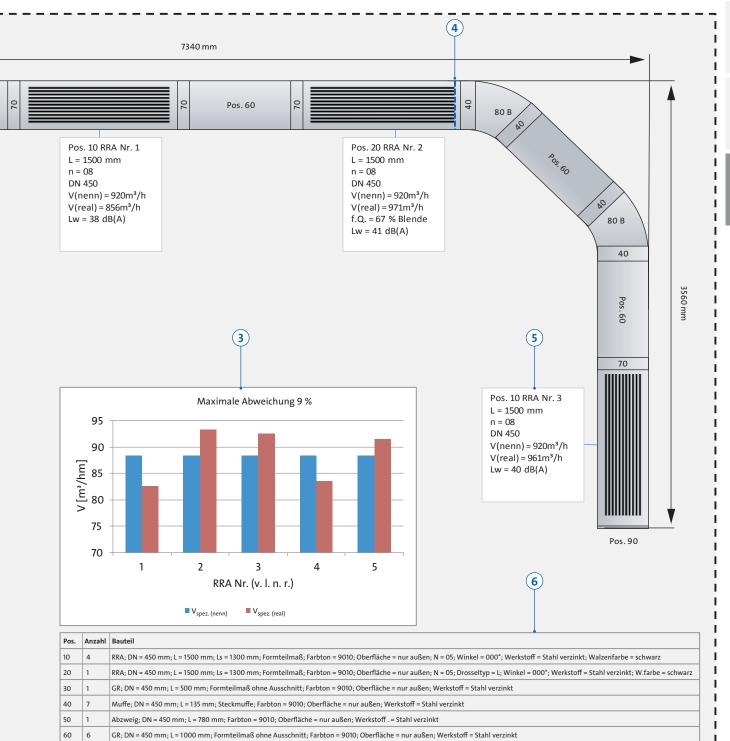
Größere Ansicht mit Legende: s. Folgeseiten.

Zu Ende gedacht: Hydraulischer Abgleich im emco Klima Rundrohrsystem.

Rundrohrluftdurchlässe werden stets als Teil eines Gesamtsystems verschiedener luftführender Komponenten in einem Rundrohrsystem eingebaut. Durch die Vielzahl möglicher Komponenten, die sich in einem solchen Rundrohrsystem befinden können (Kniestücke, Bögen, Abzweige, ...) sowie die hohe Variabilität von Rundrohrauslässen in Bezug auf Nenndurchmesser, Schlitzanzahlen und Schlitzlängen, ist der hydraulische Abgleich eines Rundrohrsystems sehr komplex und erfordert fundiertes Fachwissen.

Zudem besteht aus ästhetischen Gründen häufig der Wunsch nach einem gleichbleibenden Rohrdurchmesser, sowie einer gleichbleibenden Anzahl an Schlitzreihen über das gesamte Rohrsystem. Ein hydraulischer Abgleich des Systems kann dadurch nicht mit Hilfe von Reduzierungen oder durch eine variierende Schlitzanzahl in den Rohrdurchlässen vorgenommen werden. Dies macht den Einsatz von definierten Festwiderständen im Rohrsystem notwendig, um die Druckverhältnisse innerhalb des Stranges beeinflussen zu können, ohne dabei die einheitliche Optik zu stören.

Aus diesem Grund hat emco Klima eine Auslegungssoftware entwickelt, die es ermöglicht, eine belastbare Aussage über den hydraulischen Abgleich eines emco Klima Rundrohrstranges abzugeben. Die Software berechnet dazu die nötigen Druckverhältnisse für einen hydraulischen Abgleich im gesamten Rundrohrsystem anhand der Widerstandsbeiwerte aller Komponenten, sowie der auftretenden Strömungsgeschwindigkeiten.


Ergebnis der Berechnung sind die Art und Position definierter Festwiderstände im Rundrohrsystem, um einen hydraulischen Abgleich des Systems sicherzustellen. Zudem werden die spezifischen Austrittsvolumenströme für jeden einzelnen Durchlass im System ermittelt und weitere technische Daten des Rundrohrstranges angegeben. Es werden sowohl Druckverluste und Schallleistungspegel als auch eine Schemazeichnung sowie ein Mengengerüst des Rundrohrstranges erstellt. So wird garantiert, dass Kunden bereits in der grundlegenden Planungsphase eines Bauprojektes auf solide technische Daten der gewünschten emco Klima Rundrohrstränge zurückgreifen können.

Hydraulischer Abgleich im emco Klima Rundrohrsystem. Schnitt Auslass Nr. 1 Draufsicht: Musterstrang - Zuluft in Luftrichtung Vges = 4600 m³/h 20 40 40 Pos. 30 Pos. 60 Pos. 000° DN 450 40 $V1 = 2788 \text{ m}^3/\text{h}$ Pos $V2 = 1812 \text{ m}^3/\text{h}$. 60 70 Pos. 10 RRA Nr. 4 L = 1500 mm n = 08DN 450 $V(nenn) = 920m^3/h$ $V(real) = 863m^3/h$ Lw = 37 dB(A)Legende 1. Grundsätzliche technische Daten des Rundrohrstranges 2. Hydraulischer Abgleich durch Schlitzdrossel 3. Berechnung der spezifischen Austrittsvolumenströme Pos 4. Hydraulischer Abgleich durch Ringdrossel 60 (2) 5. Lufttechnische Daten des Rundrohrluftdurchlasses 70 6. Anzeige des Mengengerüstes Pos. 10 RRA Nr. 5 L = 1500 mm n = 08 **1** DN 450 $V(nenn) = 920m^3/h$ $V(real) = 949m^3/h$ f.Q. = 46 % Schlitz **Technische Daten** Lw = 40 dB(A)Gesamtvolumenstrom [m³/h]: 4600 Geschwindigkeit am Stranganfang [m/s]: 8,0 V_{spez,nenn} [m³/h/m]: 88 Pos. 90 Schallleistung pro m Schlitz [dB(A)]: 31 Gesamtdruckverlust [Pa]: 96 Luftlenkeinstellung: 1A/F6

mm

Drallluftdurchlässe

Muffe; DN = 450 mm; L = 110 mm; Steckmuffe; Farbton = 9010; Oberfläche = nur außen; Werkstoff = Stahl verzinkt

Enddeckel; DN = 450 mm; Rohrmaß; Farbton = 9010; Oberfläche = nur außen; Werkstoff = Stahl verzinkt

Bogen; DN = 450 mm; Winkel = 45°; Segmentbogen; Farbton = 9010; Oberfläche = nur außen; Werkstoff = Stahl verzinkt

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft durchlässe Typ RRA/ RRA-V

70

80 2

90 2

Variantenschlüssel für Rundrohre Stelle RF = Rundrohrdurchlass im Formteilmaß RV = Rundrohrdurchlass im Formteilmaß mit motorischer Verstellung (nur in 1500 mm Rohrlänge und ohne Festwiderstand) RR = Rundrohrdurchlass im Rohrmaß 2 - 3 01 = 1 (Anzahl Schlitzreihen), nicht für Typ RV 02 = 2 03 = 3 04 = 4 05 = 506 = 607 = 7 08 = 809 = 910 = 10 11 = 11 12 = 1213 = 13 14 = 14 150 = 150 mm Nenngröße (nur mit 1 – 4 Schlitzreihen) 160 = 160 mm (nur mit 1 - 4 Schlitzreihen)180 = 180 mm (nur mit 1 – 4 Schlitzreihen) 200 = 200 mm (nur mit 1 – 6 Schlitzreihen) 224 = 224 mm(nur mit 1 – 6 Schlitzreihen) 250 = 250 mm (nur mit 1 – 6 Schlitzreihen) 280 = 280 mm (nur mit 1 - 6 Schlitzreihen)300 = 300 mm (nur mit 1 – 6 Schlitzreihen) 315 = 315 mm (nur mit 1 - 6 Schlitzreihen) 355 = 355 mm (nur mit 1 - 10 Schlitzreihen)400 = 400 mm (nur mit 1 - 10 Schlitzreihen)450 = 450 mm (nur mit 1 - 10 Schlitzreihen) $500 = 500 \, \text{mm}$ 560 = 560 mm 630 = 630 mm 710 = 710 mm800 = 800 mm900 = 900 mm XXX = Angabe des Rohrdurchmessers in mm (min. 150 / max. 900 mm) 6 - 8 1000 = 1000 mm Rohrlänge XXXX = Angabe der Rohrlänge in mm (min. 500 / max. 2000 mm) 9 - 12 0800 = 800 mm Schlitzlänge XXXX = Angabe der Schlitzlänge in mm (in 100-mm-Schritten) 13 - 16 S = geschweißt F = gefalzt P = gepunktet V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A 18

emcoair Rundrohrluftdurchlässe – Typ RRA / RRA-V

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet 0000 = unlackiert GRUN = grundiert UNBE = Edelstahl unbehandelt A000 = Aluminium unbehandelt A = nur außen I = nur innen B = außen und innen 0 = ohne23 A = Luftlenkeinstellung 1A/F6 Y = Sondereinstellung S = Walzenfarbe schwarz W = weiß G = grau Y = Sonderfarbe 25 A = ohne Schlitzwiderstand, ohne Rohrwiderstand 1 = ohne Schlitzwiderstand, Rohrwiderstand 0% freier Querschnitt (Trennblech) F = Schlitzwiderstand 46% freier Querschnitt K = Schlitzwiderstand 21% freier Querschnitt L = Ringdrossel 67% freier Querschnitt M = Ringdrossel 50% freier Querschnitt P = Schlitzwiderstand 33% freier Querschnitt U = Schlitzwiderstand 58% freier Querschnitt 26 1 = mit beidseitigen Dichtlippen 27 000 = 0° Grad Verschiebewinkel YYY = 360XXX = Angabe des Verschiebewinkels in Grad 28 - 30 Verschiebewinkel (°Grad) Unternehmenssparte Lackierung Luftlenkeinstellung Walzenfarbe Anzahl Schlitzreihen Schlitzlänge (mm) Nenngröße (mm) Nahtausführung Werkstoff Rohrlänge (mm) Oberfläche Rohr Lippendichtung **Festwiderstand** Preise variantengenau im Typenkonfigurator unter www.emco-klima.com/RRA

1000 0800 P V 9010 A A S A 1 000 = Beispiel

Variantenschlüssel für Glattrohre 1 = emcoair RZ = Zubehör für Rundrohrdurchlass 2 - 3 GF = RRA-Glattrohr ohne Ausschnitt im Formteilmaß GB = RRA-Glattrohr ohne Ausschnitt im Rohrmaß 4 - 5 150 = 150 mm Durchmesser (Nenngröße) 160 = 160 mm 180 = 180 mm200 = 200 mm 224 = 224 mm250 = 250 mm 280 = 280 mm300 = 300 mm315 = 315 mm355 = 355 mm400 = 400 mm450 = 450 mm500 = 500 mm560 = 560 mm 630 = 630 mm710 = 710 mm800 = 800 mm900 = 900 mm XXX = Angabe des Rohrdurchmessers in mm (min. 150 / max. 900 mm) 6 - 8 0500 = 500 mm Rohrlänge 2000 = 2000 mm XXXX = andere 9 - 12 S = geschweißt F = gefalzt P = gepunktet 13 V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A 14 9010 = RAL-Ton 9010 glänzend XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet 0000 = unlackiert GRUN = grundiert UNBE = Edelstahl unbehandelt A000 = Aluminium unbehandelt 15 - 18 A = Lackierung außen B = Lackierung außen und innen I = Lackierung innen 0 = unlackiert

Stelle

emcoair Rundrohrluftdurchlässe – Typ RRA/RRA-V

Grundlagen und System-vorteile

Drallluft-durchlässe

Deckenluft-durchlässe

21

Schlitzluft-durchlässe

O = ohne Lochblech

4 = Lochblech 46% freier Querschnitt

X = Lochblech 0% freier Querschnitt

1 = mit beidseitigen Dichtlippen

21

Parkiel (mm)

Derdjäche (mm)

Parkiel (mm)

Derdjäche (bohr (mm)

Derdjäche (bohr (mm)

Derdjäche (mm)

Derdjäche (mm)

Derdjäche (mm)

Autrikel

1 = mit beidseitigen Dichtlippen

21

Rag GF 150 0500 P V 9010 A 0 1 = Beispiel

Quellluftdurchlässe.

Bei primär luftführenden Systemen befinden sich Quellluftdurchlässe im Trend der Zeit. Die laminare Einbringung der Zuluft über große Eintrittsflächen, in Verbindung mit nur geringen Untertemperaturen, erlaubt eine nicht fühlbare und nicht hörbare Klimatisierung. Ein sich im Raum einstellender Frischluftsee ermöglicht dabei den natürlichen Wärmequellen wie Menschen, das Ansaugen von Frischluft direkt aus dem umgebenden Bereich.

Dieses effektive und natürliche Prinzip erlaubt eine Lastabführung bis ca. 50 W/m². Fallen höhere thermische Lasten an, werden emcoair Quellluftdurchlässe mit emcocool Kühldeckensystemen kombiniert.

Große Austrittsflächen müssen aus der Sicht der Innenarchitektur entweder optisch ansprechend ausgeführt werden oder natürlich in den Raum integriert werden. Daher wird neben den für Quellluftsystemen üblichen QAL-R, -H, -V und -L auch der Sondertyp QAL-K produziert.

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluft-

durchlässe

Quellluftdurchlässe

Beschreibung, Einsatzbereiche und Produktvorteile
Typ QAL-L Raumlufttechnische Daten, Auslegungsdiagramme, Abmaße 110 Variantenschlüssel 11
Typ QAL-R Raumlufttechnische Daten, Auslegungsdiagramme, Abmaße 11: Variantenschlüssel 11:
Typ QAL-H Raumlufttechnische Daten, Auslegungsdiagramme, Abmaße 114 Variantenschlüssel 115
Typ QAL-V Raumlufttechnische Daten, Auslegungsdiagramme, Abmaße 116 Variantenschlüssel 11
Typ QAL-K Beschreibung, Einsatzbereiche und Produktvorteile

Inhalt

emcoair Quellluftdurchlass QAL

Quellluftdurchlässe vom Typ QAL werden sowohl im Komfort- als auch im Industriebereich eingesetzt. Entsprechend den baulichen Vorgaben lässt sich der QAL in zylindrischer, halboder viertelkreisförmiger sowie linearer Bauform einsetzen. Der Luftdurchlass besteht aus einem lackierten Stahlfrontblech, Decken- und Bodenplatte sowie einem internen Verteilmechanismus und lässt sich standardmäßig über einen Stutzen im oberen Deckblech anströmen.

Durch den QAL lassen sich in Abhängigkeit von Raumhöhe und Aktivitätsgrad der Personen Kühllasten zwischen 30 W/m² und 50 W/m² abführen. Quellluftdurchlässe eignen sich aufgrund der Luftführung von unten nach oben ausschließlich für reine Lüftung und Kühlung, wobei in Abhängigkeit des Aktivitätsgrades der Personen maximale Zulufttemperaturdifferenzen von - 6 K nicht unterschritten werden sollten.

Bei der Klimatisierung eines Raumes durch Quellluftdurchlässe wird die Zuluft turbulenzarm und mit sehr niedrigen Austrittsgeschwindigkeiten in Bodennähe eingebracht. Aufgrund der höheren Dichte bildet die kühlere Zuluft einen Frischluftsee im Bodenbereich aus. Wärmequellen innerhalb dieses Frischluftsees, wie beispielsweise Personen oder Maschinen, fördern durch ihre Wärmeabgabe ständig Luft aus dem Frischluftsee aufwärts durch die Aufenthaltszone bis in den Deckenbereich. Diese Strömung wird durch die Auftriebskräfte der erwärmten Luft in Gang gehalten. Die aufsteigende Luft zieht ständig Frischluft nach sich, die sich wieder an Personen und anderen Wärmequellen erwärmt und aufsteigt.

Diese Art der Lüftung begünstigt sowohl den direkten Abtransport von Schadstoffen in Richtung der Abluftöffnung im Deckenbereich als auch die Steigerung der Luftqualität im direkten Umfeld der Personen, da ständig unbelastete Luft aus dem Frischluftsee nachströmt.

Die gesteigerte Luftqualität in Verbindung mit den sehr niedrigen Luftströmungsgeschwindigkeiten machen dieses System bei mäßigen Kühllasten zu einer attraktiven Alternative gegenüber üblichen Mischluftsystemen.

Einsatzbereiche

- Einzelbüros
- Großraumbüros
- Konferenzräume
- Verwaltungszentren
- Kinos
- Restaurants
- Sporthallen
- Industriehallen
- Laboratorien
- Schadstoffbelastete Arbeitsplätze

Produktvorteile

- Niedrige Strömungsgeschwindigkeiten im Aufenthaltsbereich
- Gesteigerte Luftqualität im Aufenthaltsbereich
- Abführbare Leistung von 30 W/m² bis 50 W/m² (in Abhängigkeit vom Aktivitätsgrad)

Der Quellluftdurchlass ist ausschließ-

gesehen. In den üblichen Ausführun-

lich für den Einsatz im Kühlfall vor-

gen werden diese Luftdurchlässe

aktive Höhe des QAL nicht größer

dingungen einzuhalten.

gestaltung einzubeziehen.

auf dem Boden des zu belüftenden

Raumes angeordnet. Dabei sollte die

als etwa 2 m sein, um die Komfortbe-

Dabei ist es möglich, die Luftdurch-

und Farbgebung bewusst in die Raum-

In besonderen Einsatzfällen können

Quellluftdurchlässe auch als lange

flache Elemente eingesetzt werden,

so zum Beispiel als "Fußbodenleiste"

oder als Einbauelement in Schrank-

wänden. Bei Austrittsgeschwindig-

keiten ≥0,25m/s werden zusätzlich

Sie sind besonders geeignet, die an-

stehende Zuluft senkrecht zur Ober-

hochwertige, druckverlustfreie

Wabengleichrichter eingesetzt.

lässe durch entsprechende Form-

Einsatzmöglichkeiten

Grundlagen und Systemvorteile

Drallluftdurchlässe

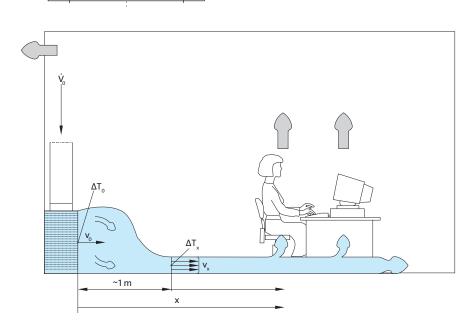
Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluft-durchlässe

Konstruktiver Aufbau


Der Quellluftdurchlass QAL besteht aus einer zylindrischen (voll-, halboder viertelkreisförmigen) oder ebenen Frontplatte (1) aus Lochblech (Standardlochung 3 mm mit ca. 21% freiem Querschnitt). In Sonderfällen werden nach Bedarf feinere oder gröbere Lochungen verwendet. Der Turbulenzgrad sinkt mit der Abnahme des Lochquerschnittes. Der innen liegende Verteilmechanismus (2)benötigt keinen Filtereinsatz und ist deshalb wartungsfrei.

Im Bodendeckel (3) sind Stellschrauben zur Justierung vorgesehen. Für den Einbau in Wänden und für eine Ausführung mit besonders flachen Anschlusskästen werden zur Optimierung der Anströmgeometrie zusätzlich zonenweise einstellbare Schlitzschieber eingesetzt. Diese sorgen für ein gleichmäßiges Anströmverhalten über die gesamte Lochblechfront. Die Einstellung kann bei Bedarf über die demontierbare Frontplatte jederzeit geändert werden.

Funktionsweise

Der innenliegende Verteilmechanismus verteilt die Zuluft gleichmäßig über die gesamte Frontplattenoberfläche, so dass überall nahezu gleiche Austrittsgeschwindigkeiten herrschen. Diese sind so klein, dass die Luft entsprechend ihrer Temperaturdifferenz zur Raumluft auf kurzem Wege in den Fußbodenbereich abfällt und sich aufgrund des geringen Turbulenzgrades (nahezu keine Mischung mit der Raumluft) ungestört entlang des Fußbodens ausbreitet. An Wärmequellen

steigen dann Teile der Luft nach oben.

Prinzipielle Einbauordnung QAL

fläche austreten zu lassen.

Erklärung:

 L_{WA} [dB(A)] = Schallleistungspegel A-bewertet

Δp, [Pa] = Druckverlust

 $\Delta T_0 [K]$ = Temperaturdifferenzen zwischen Raum- und

7uluft

ΔT_, [K] = Temperaturdifferenzen zwischen Raum- und

Zuluft im Abstand x vom Auslass

[m/s] = Luftgeschwindigkeit

am Auslass

= Luftgeschwindigkeit [m/s]

bis 0,25 m Höhe vom Boden und Abstand x

vom Auslass

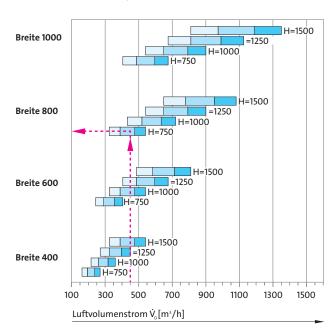
 $[m^3/h]$ = Zuluftvolumenstrom

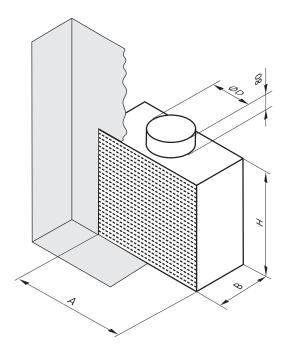
= Abstand vom [m]Durchlass

Raumlufttechnische Daten QAL-L

Nenngröße	Höhe [mm]	\dot{V}_{min} [m ³ /h]	\dot{V}_{max} [m ³ /h]	$\dot{V}_{nenn} [m^3/h]$	für V _{nenn} Δp [Pa]	$f\ddot{u}r\dot{V}_{nenn}L_{WA}[dB(A)]$	für V _{nenn} L [m]
Breite 400	750	160	270	220	4	< 20	1,3
	1000	220	360	290	5	< 20	1,6
	1250	270	450	360	5	< 20	1,8
	1500	320	540	430	5	20	2,0
Breite 600	750	240	400	320	4	< 20	1,5
	1000	320	540	430	5	21	1,9
	1250	400	670	540	7	22	2,3
	1500	490	810	650	9	24	2,8
Breite 800	750	320	540	430	5	22	1,8
	1000	430	720	580	9	26	2,6
	1250	540	900	720	10	27	3,1
	1500	650	1080	860	12	28	3,7
Breite 1000	750	400	680	540	6	25	2,2
	1000	540	900	720	10	27	3,0
	1250	670	1120	900	14	29	3,6
	1500	810	1350	1080	15	30	4,2

Festlegung:


 \dot{V}_{min} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,15 m/s;


V_{max}: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,25 m/s;

 $V_{\text{nenn}}^{\text{index}}$: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,2 m/s; L: horizontaler Abstand vom Auslass für $\Delta T_0 = -2$ K, so dass Luftgeschwindigkeit \leq 0,25 m/s

Einsatzbereiche QAL-L

Die für die einzelnen Bauformen, -größen und -höhen angegebenen 3 Luftvolumenstrombereiche sind auf der Basis der Austrittsgeschwindigkeiten festgelegt. Die Austrittsgeschwindigkeiten beziehen sich dabei auf die Gesamtfläche (Frontplattenfläche) des Quellluftdurchlasses.

Maße QAL-L (linearer Quellluftdurchlass für Wandeinbau)

Größe	DN 400	DN 600	DN 800	DN 1000
Maß A	402	602	802	1002
Maß B	332	382	382	402
Maß ØD	222	278	278	313
Maß H	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500

emcoair Quellluftdurchlässe - Typ QAL-L

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-

durchlässe

Typ QAL-L

Variantenschlüssel für Typ QAL-L

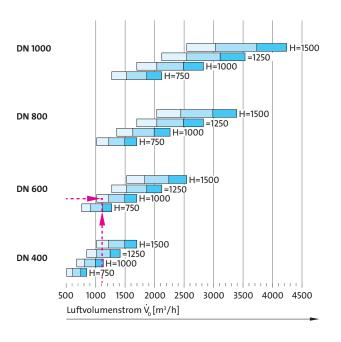
Stelle 1 = emcoair 2 - 5 QALL = Quellluftdurchlass QAL-L 0400 = 400 mm Nenngröße 0600 = 6000800 = 800 1000 = 1000 XXXX = Angabe der Nenngröße in mm 6 - 9 0750 = 750 mm Höhe 1000 = 1000 1250 = 1250 1500 = 1500 XXXX = Angabe der Höhe in mm 10 - 13 332 = 332 mm Tiefe (Standardtiefe für DN400) 382 = 382 (Standardtiefe für DN 600 und 800) 402 = 402 (Standardtiefe für DN 1000) XXX = Angabe der Tiefe in mm 14 - 16 222 = 222 mm Stutzendurchmesser (Standard-Ø für DN400) 278 = 278 Standard-Ø für DN 600 und 800) 313 = 313 Standard-Ø für DN 1000) XXX = Angabe des Stutzendurchmessers in mm 17 - 19 O = Stutzenposition oben U = unten Y = Sonderposition/-maß 20 V = Werkstoff Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A A = Aluminium21 9010 = RAL-Ton 9010 glänzend 0000 = unlackiert XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 22 - 25 K = Frontblech in Komfortausführung mit umlaufend 20 mm ungelochtem Rand I = Frontblech in Industrieausführung, durchgängig gelocht 26 Stutzendurchmesser (mm) Unternehmenssparte Nenngröße (mm) Stutzenposition Werkstoff Ausführung Höhe (mm) Oberfläche Tiefe (mm) Preise variantengenau im Typenkonfigurator unter Artikel www.emco-klima.com/QAL-L

332 222 O V 9010 K = Beispiel

Raumlufttechnische Daten QAL-R

Nenngröße	Höhe [mm]	\dot{V}_{min} [m ³ /h]	\dot{V}_{max} [m ³ /h]	$\dot{V}_{nenn} [m^3/h]$	für V _{nenn} Δp [Pa]	$f\ddot{u}r\dot{V}_{nenn}L_{WA}[dB(A)]$	$f\ddot{u}r\dot{V}_{nenn}L[m]$
DN 400	750	500	850	680	15	28	1,3
	1000	680	1130	900	20	31	1,6
	1250	850	1410	1130	25	32	1,9
	1500	1020	1700	1360	32	34	2,3
DN 600	750	760	1270	1020	19	33	1,5
	1000	1020	1700	1360	30	36	2,3
	1250	1270	2120	1700	40	38	2,5
	1500	1530	2540	2040	41	39	2,8
DN 800	750	1020	1700	1360	25	36	2,0
	1000	1360	2260	1810	35	40	2,6
	1250	1700	2830	2260	40	41	3,0
	1500	2040	3390	2710	50	42	3,5
DN 1000	750	1270	2120	1700	31	38	2,5
	1000	1700	2830	2260	36	41	3,0
	1250	2120	3530	2830	48	43	3,7
	1500	2540	4240	3390	57	45	4,5

Festlegung:


 \dot{V}_{min} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,15 m/s;

V_{max}: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,25 m/s;

V_{nenn}: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,2 m/s; L: horizontaler Abstand vom Auslass für ΔT₀ = −2K, so dass Luftgeschwindigkeit ≤ 0,25 m/s

Einsatzbereiche QAL-R

Die für die einzelnen Bauformen, -größen und -höhen angegebenen 3 Luftvolumenstrombereiche sind auf der Basis der Austrittsgeschwindigkeiten festgelegt. Die Austrittsgeschwindigkeiten beziehen sich dabei auf die Gesamtfläche (Frontplattenfläche) des Quellluftdurchlasses.

Maße QAL-R (runder Quellluftdurchlass [360°] für freistehende Anordnung)

Größe	DN 400	DN 600	DN 800	DN 1000
Maß A	402	602	802	1002
Maß ØD	313	398	448	498
Maß H	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500

emcoair Quellluftdurchlässe - Typ QAL-R

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-

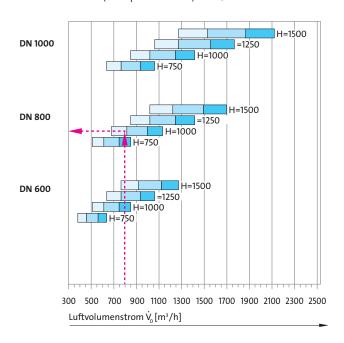
durchlässe

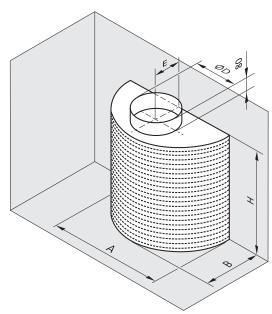
Typ QAL-R

Stelle Variantenschlüssel für Typ QAL-R 1 = emcoair QALR = Quellluftdurchlass QAL-R 2 - 5 0400 = DN400 mm Nenngröße 0600 = DN6000800 = DN800 1000 = DN1000 XXXX = Angabe der Nenngröße in mm 0750 = 750 mm Höhe 1000 = 1000 mm1250 = 1250 mm 1500 = 1500 mmXXXX = Angabe der Höhe in mm 10 - 13 313 = 313 mm Stutzendurchmesser (Standard-Ø für DN400) 398 = 398 mm (Standard-Ø für DN600) 448 = 448 mm (Standard-Ø für DN800) 498 = 498 mm (Standard-Ø für DN1000) XXX = Angabe des Stutzendurchmessers in mm O = Stutzenposition oben U = unten Y = Sonderposition/-maß 17 V = Werkstoff Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A A = Aluminium 9010 = RAL-Ton 9010 glänzend 0000 = unlackiert XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 19 - 22 K = Frontblech in Komfortausführung mit umlaufend 20 mm ungelochtem Rand (Standard) I = Frontblech in Industrieausführung, durchgängig gelocht Unternehmenssparte Stutzendurchmesser Nenngröße (mm) Stutzenposition Ausführung Höhe (mm) Preise variantengenau Werkstoff im Typenkonfigurator unter Artikel www.emco-klima.com/QAL-R

313 O V 9010 K = Beispiel

Raumlufttechnische Daten QAL-H


Nenngröße	Höhe [mm]	\dot{V}_{min} [m ³ /h]	\dot{V}_{max} [m ³ /h]	\dot{V}_{nenn} [m ³ /h]	für V _{nenn} Δp [Pa]	$ f\ddot{u}r\dot{V}_{_{nenn}}L_{_{WA}}[dB(A)]$	für \dot{V}_{nenn} L [m]
DN 600	750	380	640	510	7	< 20	1,0
	1000	510	850	680	11	23	1,4
	1250	640	1060	850	14	25	1,7
	1500	760	1270	1020	16	26	2,0
DN 800	750	510	850	680	11	24	1,2
	1000	680	1130	900	15	27	1,6
	1250	850	1410	1130	18	29	1,9
	1500	1020	1700	1360	23	31	2,3
DN 1000	750	640	1060	850	13	26	1,3
	1000	850	1410	1130	16	27	1,8
	1250	1060	1770	1410	22	30	2,1
	1500	1270	2120	1700	25	32	2,5


Festlegung:

- \dot{V}_{min} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,15 m/s;
- \dot{V}_{max} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,25 m/s;
- V_{nenn}: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,2 m/s;
- L: horizontaler Abstand vom Auslass für $\Delta T_0 = -2K$, so dass Luftgeschwindigkeit ≤ 0.25 m/s

Einsatzbereiche QAL-H

Die für die einzelnen Bauformen, -größen und -höhen angegebenen 3 Luftvolumenstrombereiche sind auf der Basis der Austrittsgeschwindigkeiten festgelegt. Die Austrittsgeschwindigkeiten beziehen sich dabei auf die Gesamtfläche (Frontplattenfläche) des Quellluftdurchlasses.

Maße QAL-H (halbrunder Quellluftdurchlass [180°] für Wandein-/vorbau)

Größe	DN 600	DN 800	DN 1000
Maß A	602	802	1002
Maß B	386	404	504
Maß ØD	278	313	353
Maß E	193	202	252
Maß H	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500

emcoair Quellluftdurchlässe – Typ QAL-H

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-

durchlässe

Typ QAL-H

Stelle Variantenschlüssel für Typ QAL-H 1 = emcoair QALH = Quellluftdurchlass QAL-H 2 - 5 0600 = DN600 mm Nenngröße 0800 = DN8001000 = DN1000 XXXX = Angabe der Nenngröße in mm 6 - 9 0750 = 750 mm Höhe 1000 = 1000 mm 1250 = 1250 mm 1500 = 1500 mm XXXX = Angabe der Höhe in mm 10 - 13 386 = 386 mm Tiefe (Standardtiefe bei DN600) 404 = 404 mm (Standardtiefe bei DN800) 504 = 504 mm (Standardtiefe bei DN1000) XXX = Angabe der Tiefe in mm 14 - 16 278 = 278 mm Stutzendurchmesser (Standard-Ø bei DN600) 313 = 313 mm (Standard-Ø bei DN800) 353 = 353 mm (Standard-Ø bei DN1000) XXX = Angabe des Stutzendurchmessers in mm 17 - 19 O = Stutzenposition oben U = unten Y = Sonderposition/-maß V = Werkstoff Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A 21 A = Aluminium 9010 = RAL-Ton 9010 glänzend 0000 = unlackiert XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 22 - 25 K = Frontblech in Komfortausführung mit umlaufend 20 mm ungelochtem Rand (Standard) I = Frontblech in Industrieausführung, durchgängig gelocht 26 Stutzendurchmesser (mm) Unternehmenssparte Nenngröße (mm) Stutzenposition Werkstoff Ausführung Höhe (mm) Oberfläche Tiefe (mm) Preise variantengenau im Typenkonfigurator unter Artikel www.emco-klima.com/QAL-H

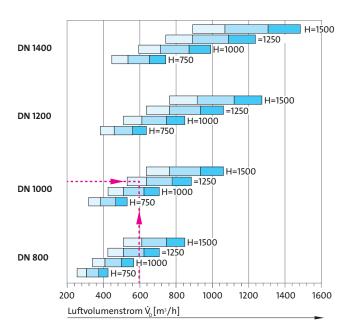
386 278 O V 9010 K = Beispiel

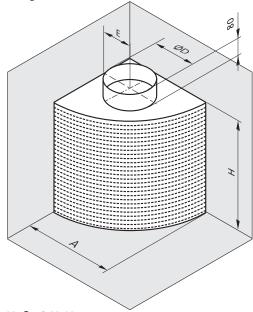
Raumlufttechnische Daten QAL-V

Nenngröße	Höhe [mm]	\dot{V}_{min} [m ³ /h]	\dot{V}_{max} [m ³ /h]	\dot{V}_{nenn} [m ³ /h]	für V _{nenn} Δp [Pa]	$f\ddot{u}r\dot{V}_{nenn}L_{WA}[dB(A)]$	für \dot{V}_{nenn} L [m]
DN 800	750	250	420	340	10	29	1,4
	1000	340	560	450	15	33	1,8
	1250	420	710	560	20	34	2,1
	1500	510	850	680	23	36	2,5
DN 1000	750	320	530	420	10	30	1,6
	1000	420	710	560	15	33	2,1
	1250	530	880	710	20	34	2,6
	1500	640	1060	850	23	37	3,0
DN 1200	750	380	640	510	11	33	1,7
	1000	510	850	680	18	37	2,2
	1250	640	1060	850	22	38	2,7
	1500	760	1270	1020	26	39	3,1
DN 1400	750	450	740	590	15	35	2,0
	1000	590	990	790	20	37	2,6
	1250	740	1240	990	25	39	3,1
	1500	890	1480	1190	30	41	3,6

Festlegung:

 \dot{V}_{min} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,15 m/s;


V_{max}: Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,25 m/s;


 \dot{V}_{nenn} : Luftvolumenstrom für eine Austrittsgeschwindigkeit von 0,2 m/s;

L: horizontaler Abstand vom Auslass für $\Delta T_0 = -2K$, so dass Luftgeschwindigkeit ≤ 0.25 m/s

Einsatzbereiche QAL-V

Die für die einzelnen Bauformen, -größen und -höhen angegebenen 3 Luftvolumenstrombereiche sind auf der Basis der Austrittsgeschwindigkeiten festgelegt. Die Austrittsgeschwindigkeiten beziehen sich dabei auf die Gesamtfläche (Frontplattenfläche) des Quellluftdurchlasses.

Maße QAL-V (viertelrunder Quellluftdurchlass [90°] für Eckanordnung)

In Abhängigkeit vom Einsatzfall und der Einbausituation können andere Bauformen und Abmessungen auf Anfrage geliefert werden. Weitere Optionen: Anschluss von unten, Lackierung nach RAL-Farbton, Ausführung in Edelstahl.

Größe	DN 800	DN 1000	DN 1200	DN 1400
Maß A	404	504	604	704
Maß ØD	222	278	278	313
Maß E	169	210	251	293
Maß H	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500	750/1000/1250/1500

emcoair Quellluftdurchlässe - Typ QAL-V

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-


durchlässe

Typ QAL-V

Stelle Variantenschlüssel für Typ QAL-V 1 = emcoair QALV = Quellluftdurchlass QAL-V 2 - 5 0800 = DN800 mm Nenngröße 1000 = DN1000 1200 = DN1200 1400 = DN1400 XXXX = Angabe der Nenngröße in mm 0750 = 750 mm Höhe 1000 = 1000 mm1250 = 1250 mm 1500 = 1500 mmXXXX = Angabe der Höhe in mm 10 - 13 222 = 222 mm Stutzendurchmesser (Standard-Ø bei DN800) 278 = 278 mm (Standard-Ø bei DN1000 und 1200) 313 = 313 mm (Standard-Ø bei DN1400) XXX = Angabe des Stutzendurchmessers in mm 14 - 16 O = Stutzenposition oben U = unten Y = Sonderposition/-maß 17 V = Werkstoff Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A A = Aluminium 9010 = RAL-Ton 9010 glänzend 0000 = unlackiert XXXX = RAL-Classic nach Wahl ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonderlackierung W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt 19 - 22 K = Frontblech in Komfortausführung mit umlaufend 20 mm ungelochtem Rand (Standard) I = Frontblech in Industrieausführung, durchgängig gelocht Unternehmenssparte Stutzendurchmesser Nenngröße (mm) Stutzenposition Ausführung Höhe (mm) Preise variantengenau Werkstoff im Typenkonfigurator unter Artikel www.emco-klima.com/QAL-V

222 O V 9010 K = Beispiel

emcoair Quellluftdurchlass QAL-K

Quellluftdurchlässe des Typs QAL-K sind für den direkten Kanaleinbau vorgesehen.

Der Durchlass besteht aus einem in ein Rahmenprofil aus Aluminium eingesetzten Frontblech (Stahl, verzinkt).

Die Befestigung am Kanal erfolgt über Schrauben im Rahmenprofil.
Die Kombination des Frontbleches mit dem Vlies, das im Bedarfsfall gereinigt bzw. ausgetauscht werden kann, gewährleistet ein gleichmäßiges turbulenzarmes Ausströmen der Luft über die gesamte Fläche.

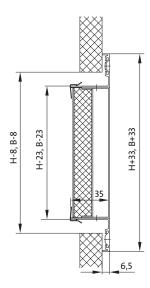
Einsatzbereiche

- Einzelbüros
- Großraumbüros
- Konferenzräume
- Verwaltungszentren
- Kinos
- Restaurants
- Sporthallen
- Industriehallen
- Laboratorien
- Schadstoffbelastete Arbeitsplätze

Produktvorteile

- Niedrige Strömungsgeschwindigkeiten im Aufenthaltsbereich
- Gesteigerte Luftqualität im Aufenthaltsbereich
- Abführbare Leistung von 30 W/m² bis 50 W/m² (in Abhängigkeit vom Aktivitätsgrad)

Lieferbare Größen


Der QAL-K wird in folgenden Nenngrößen geliefert:

H = 225, 325, 425 [mm]

L = 425, 525, 625, 825 [mm]

Zwischengrößen auf Anfrage Die Außenmaße einschließlich Rahmenprofil sind jeweils 33 mm größer.

Der QAL-K kann mit Austrittsgeschwindigkeiten zwischen 0,2 m/s und 0,3 m/s betrieben werden. Entsprechend der Austrittsfläche [(H-23) x (B-23)] ergeben sich somit die Auslegungsvolumenströme: V= v x A

emcoair Quellluftdurchlässe – Typ QAL-K

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ QAL-K 1 = emcoair QALK = Quellluftdurchlass QAL-K (für Kanaleinbau) 2 - 5 Deckenluftdurchlässe 0225 = 225 mm Höhe $0325 = 325 \, \text{mm}$ $0425 = 425 \, \text{mm}$ XXXX = Angabe der Höhe in mm 6 - 9 Schlitzluft-00425 = 425 mm Breite durchlässe 00525 = 525 mm $00625 = 625 \, \text{mm}$ 00825 = 825 mm 01025 = 1025 mmRundrohrluft-01225 = 1225 mm durchlässe XXXXX = Angabe der Breite in mm 10 - 13 V = Werkstoff Stahl, verzinkt A = Aluminium 14 9010 = RAL-Ton 9010 glänzend 0000 = unlackiert XXXX = RAL-Classic nach Wahl

Preise variantengenau im Typenkonfigurator unter www.emco-klima.com/QAL-K

web

15 - 18

19

Unternehmenssparte
Unternehmenssparte
Artikel
Höhe (mm)
Werkstoff
Oberfläche
Filter
Filter

ONCS = NCS-Ton

OODB = DB-Lack

RALP = RAL-PEARL-Ton

RALG = RAL-Classic-Ton

YYYY = Sonderlackierung

E6C0 = naturfarbig eloxiert

1 = mit Filtervlies (Klasse G3)

0 = ohne Filter

Industrie-Iuftdurchlässe.

Durch ein Forschungsvorhaben des BMFT (Förderkennzeichen 01 HK 216) wurde ein Luftführungsmodell entwickelt, das sich zum "de-facto"-Standard in der Industrielüftung etabliert hat.

Die Schichtenlüftung balanciert dabei die aus dem Aufenthaltsbereich abtransportierten Warmluftströme mit Frischluft aus. Dadurch werden bei geringen Zuluftraten günstigste Arbeitsplatzbedingungen geschaffen. In Hallen mit großen Abmessungen und geringen oder ohne Schadstoffbelastungen, wie Veranstaltungshallen und Montagebereichen, werden dagegen höhere Installationspunkte und vertikale Eindringtiefen im Heizfall verlangt.

Die emcoair LUWIRO, VLV bzw. VLD decken zusätzlich zu den Ansprüchen der Schichtenlüftung auch diese Anforderungen ab. Werden höchste Eindringtiefen bei hohen Zulufttemperaturen verlangt, werden Industrieluftdurchlässe wie der emcoair WKD benötigt, der durch eine integrierte Weitwurfdüse auch aus höchsten Aufhängepunkten eine Warmlufteinbringung bis in den Aufenthaltsbereich garantiert. Eine schnelle Aufheizung und damit eine hohe Energieeinsparung sind somit gesichert.

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Inhalt

Тур IVA	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau, Funktionsweise	. 122
Raumlufttechnische Daten und Abmessungen	. 124
Variantenschlüssel	. 126
Typ VLD/VLV	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau	. 127
Funktionsweise, Raumlufttechnische Daten und Einsatzbereiche	. 128
Variantenschlüssel	. 130
Typ LDA	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau, Funktionsweise	. 132
Raumlufttechnische Daten, Einsatzbereiche und Abmessungen	. 134
Variantenschlüssel	. 136
Typ LDI	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau und Funktionsweise	. 138
Raumlufttechnische Daten und Einsatzbereiche.	. 139
Ausführungen und Abmessungen	. 140
Zubehör	141
Variantenschlüssel	. 143
Typ LUWIRO	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau	. 146
Funktionsweise und Abmessungen	. 147
Raumlufttechnische Daten	. 148
Optionale Ausführung - TVE, Regelungstechnisches Zubehör	. 149
Variantenschlüssel	. 150
тур WKD380	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau und Funktionsweise	151
Raumlufttechnische Daten, Einsatzbereiche und Abmessungen	. 153
Variantenschlüssel	. 155
тур WKD381	
Beschreibung, Einsatzbereiche, Produktvorteile, Konstruktiver Aufbau, Funktionsweise, Raumlufttechnische Daten	
und Einsatzbereiche	
Abmessungen	. 158
Variantenschlüssel	159

emcoair Verdrängungsluftdurchlass IVA

Der IVA ist ein runder Verdrängungsauslass, der für den Einsatz im Industrieumfeld und in Mehrzweckhallen entwickelt wurde. Über eine zweigeteilte Klappenmimik lässt sich die Ausblasrichtung stufenlos zwischen horizontalem Radialstrahl und Vertikalstrahl verstellen.

Auf diese Weise wird je nach abzuführenden Heiz- und Kühllasten für unterschiedliche Raumsituationen stets eine optimale und komfortable Raumdurchströmung bei geringen Schallleistungspegeln erreicht.

Einsatzbereiche

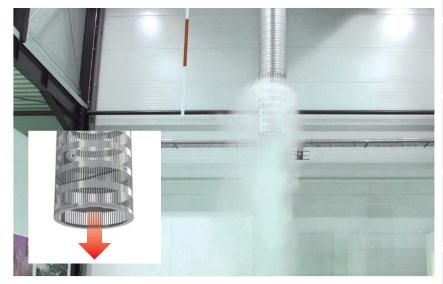
- Gewerbe- und Industrieräume
- Versammlungsräume
- Messehallen
- Mehrzweckhallen
- Kaufhäuser

Produktvorteile

- Stetige Steuerung der Strahlrichtung von Horizontal- bis Vertikalstrahl
- Höchste vertikale Eindringtiefen im Heizfall durch integrierte Einströmdüse
- Einfache Verstellung von Hand oder motorisch
- Problemlos koppelbar mit Temperaturdifferenzregelung zur vollautomatischen Steuerung von mehreren Durchlässen

Konstruktiver Aufbau

Der IVA besteht aus einem Langlochzylinder, welcher eine optimale Strahlverstellung von horizontal nach vertikal ermöglicht. Der Auslass wird über einen Steckverbinder an den Zuluftkanal angeschlossen. Innerhalb des Langlochzylinders wird die Luft über eine strömungsoptimierte Einströmdüse auf die zweigeteilte Verstellklappe fokussiert.


Drallluft-

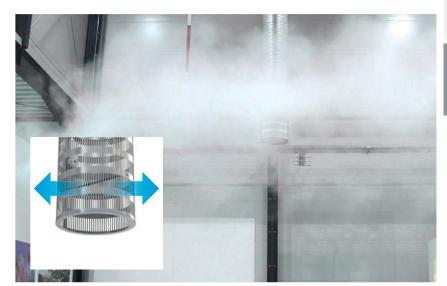
durchlässe

Funktionsweise

1. Heizfall

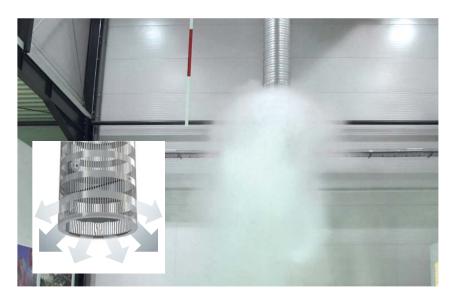
Ist die Klappe des IVA geöffnet, bildet sich ein Vertikalstrahl durch den offenen Boden des Auslasses aus. In dieser Einstellung wird die aus dem Langlochzylinder austretende Luft vom Vertikalstrahl mitgerissen, was zu hohen Eindringtiefen im Heizfall führt.

Deckenluftdurchlässe


Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe


2. Kühlfall

Bei geschlossener Klappe wird ein Horizontalstrahl erzeugt, der durch einen hohen Austrittsimpuls zu großen Wurfweiten im Kühlfall führt.

3. Zwischenstellung

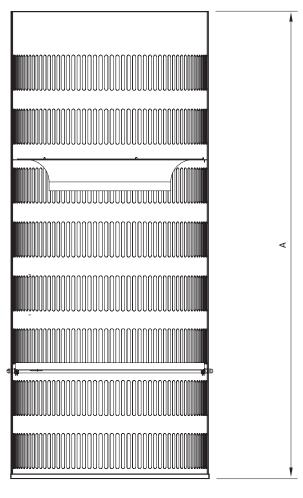
Durch die stufenlose Verstellmimik können außerdem unterschiedliche Strahlformen zwischen horizontal und vertikal erreicht werden.

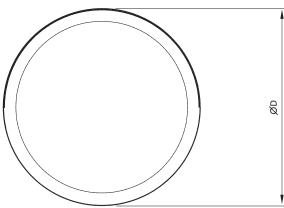
Raumlufttechnische Daten IVA

Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	hori. Wurfw. x _{hor} [m]	vert. Eindringt. y _{max} [m]
DN 250	35	620	12	0,8	3,5
	45	930	27	0,9	4,9
	55	1350	56	1,1	6,6
DN 315	35	1050	14	1,3	4,7
	45	1550	30	1,6	6,5
	55	2150	58	1,8	8,6
DN 355	35	1350	14	1,7	5,5
	45	2000	31	2,0	7,5
	55	2800	61	2,3	9,9
DN 400	35	1700	15	2,3	6,3
	45	2500	32	2,6	8,6
	55	3500	62	3,0	11,4
DN 450	35	2100	14	2,9	7,0
	45	3100	31	3,4	9,7
	55	4400	63	3,9	13,0
DN 500	35	2650	14	3,6	7,9
	45	4000	32	4,3	11,0
	55	5600	63	4,9	14,6
DN 560	35	3300	13	4,6	8,8
	45	5000	31	5,4	12,3
	55	7100	63	6,2	16,5
DN 630	35	4100	13	5,8	9,7
	45	6400	31	6,9	14,0
	55	9200	65	8,0	18,9

Drallluftdurchlässe

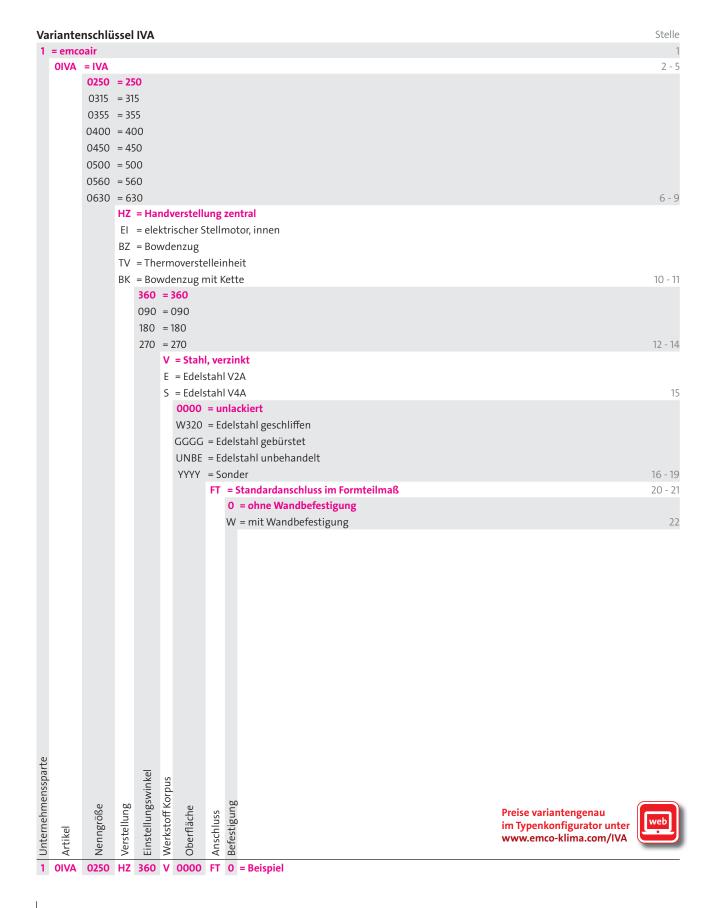
Deckenluftdurchlässe


Schlitzluftdurchlässe


Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluft durchlässe Typ IVA


emcoair IVA – Abmessungen

Typ IVA

Größe DN	250	315	355	400	450	500	560	630
Maß A	841,5	841,5	951	951	951	1059	1167	1167
Maß ØD	248	313	353	398	448	498	558	628

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

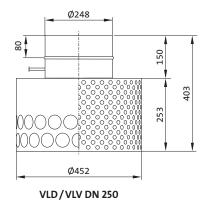
Industrieluftdurchlässe Typ VLD/VLV

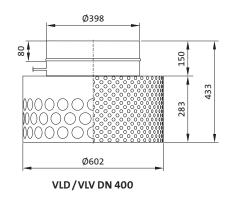
emcoair Typ VLD

emcoair Typ VLV

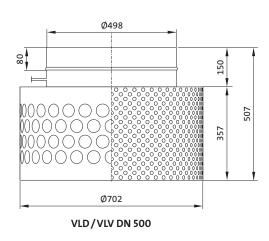
emcoair Variabler Luftdurchlass VLD / VLV

Der VLD/VLV ist ein Luftdurchlass, der aufgrund seiner mit ihm zu realisierenden Strahlformen sowohl im Industrie- als auch im Komfortbereich einsetzbar ist. Horizontal- (Kühlfall) und Vertikalstrahl (Heizfall) lassen sich mit ihm genauso erzeugen wie beispielsweise eine örtliche Verdrängungsströmung, die insbesondere in thermisch oder schadstoffbelasteten Bereichen sinnvoll ist. Der variable Luftdurchlass kann unmittelbar unter der Decke oder abgehängt eingesetzt werden, er wird direkt an das Rohr angeschlossen.

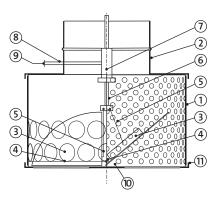

Der VLD ist so konzipiert, dass er nahezu alle an Luftdurchlässe, insbesondere im Gewerbe- und Industriebereich, zu stellenden Anforderungen erfüllen kann. So können einerseits große vertikale Eindringtiefen im Heizfall erreicht werden, andererseits wird die Kaltluft im Kühlfall hochinduktiv dem Raum zugeführt. Der VLV ist speziell für die Luftzufuhr unmittelbar an schadstoffbelasteten Arbeitsplätzen konzipiert worden. Mit ihm wird die Luft mit geringerem Impuls zugeführt, so dass die Schadstoffe gezielt abgeführt werden und gleichzeitig eine geringere Schadstoffkonzentration im Arbeitsbereich gegenüber einem konventionellen Mischluftsystem erreicht wird.


Einsatzbereiche

- Industriehallen
- Verkaufseinrichtungen
- Gewerberäume
- Laboratorien
- schadstoffbelastete Arbeitsplätze
- Sporthallen
- In Raumhöhen von 3 m bis 15 m


Produktvorteile

- Beliebige Einstellung der Strahlrichtung von horizontal bis vertikal
- Schneller Temperatur- und Geschwindigkeitsabbau
- Zugfreie Einbringung der Luft im Kühlfall
- Örtliche Verdrängungslüftung in belasteten Raumbereichen insbesondere in der Bauform VLV
- Geringe Druckverluste und niedriger Schallleistungspegel
- Komfortable Handverstellung über Schnurzuggetriebe
- Problemlose Umrüstung (auch nachträglich) von Hand- auf Motorverstellung möglich
- Ohne Anschlusskasten einsetzbar



Konstruktiver Aufbau

Der VLD/VLV besteht aus einem stahlverzinkten, mit Einzelöffnungen versehenen Gehäuse (1) bzw. einem speziell perforierten Mantelblech mit Anschlussstutzen (2), sowie vier als Bodenfläche dienenden Lenkelementen (3), die jeweils auf einer Horizontalachse (4) drehbar gelagert sind. Die Lenkelemente sind über gelenkig gelagerte starre Verbindungselemente (5) mit einer Zahnstange (6) verbunden, die an eine Halterung mit Zahnrad (7) angeschlossen ist. An diesem Zahnrad ist eine Welle (8) befestigt, die einseitig aus dem Anschlussstutzen herausgeführt wird. Am äußeren freien Ende dieser Welle

ist eine Arretierung vorhanden bzw. die Verstelleinrichtung (9) (handbetätigtes Getriebe bzw. Stellmotor) aufgesetzt.

Eine nachträgliche Umrüstung von Hand- auf Motorverstellung ist problemlos ohne Demontage des Luftdurchlasses möglich. Auf der dem Anschlussstutzen gegenüberliegenden Seite des Luftdurchlasses sind eine mittige Scheibe (10) sowie ein äußerer Lenkring (11) zur Erhöhung der vertikalen Austrittsgeschwindigkeit angeordnet. Alle Einzelteile bilden eine Einheit, die sich ohne zusätzlichen Anschlusskasten direkt an das Lüftungssystem anschließen lässt.

Drallluftdurchlässe

Funktionsweise

Die durch den Anschlussstutzen in den Luftdurchlass eintretende Luft wird bei geschlossenen Lenkelementen umgelenkt und tritt horizontal über die Öffnungen des Luftdurchlassmantels aus. Im freihängenden Einbauzustand ist insbesondere bei den kleinen Baugrößen des VLD sogar eine nach oben gerichtete Geschwin-

digkeitskomponente vorhanden.
Durch das Drehen der vier Bodenelemente in den Luftdurchlass hinein wird der Strahlaustrittswinkel kontinuierlich verändert, bis bei vollständiger Öffnung der Vertikalstrahl erreicht ist. Die besondere Lagerung der Bodenelemente erzeugt insbesondere in einem Winkelbereich von 0° bis 45°

(Anstellwinkel der Klappen) eine zusätzliche Drallkomponente. Durch eine Vergrößerung der Austrittsfläche beim VLV wird die Austrittsgeschwindigkeit deutlich gesenkt und damit eine örtliche Verdrängungsströmung noch ausgeprägter realisiert.

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe Typ VLD/VLV

Kühlfall/horizontaler Radialstrahl am Beispiel VLD

Innere und äußere Wärmelasten, die beispielsweise durch den Produktionsprozess und/oder Sonneneinstrahlung entstehen, müssen durch die Lüftungsanlage abgeführt werden. Dazu muss die benötigte Kaltluft möglichst hochinduktiv oberhalb des Arbeitsbereiches eingebracht werden, um Zugerscheinungen zu vermeiden. Die Anordnung der Strömungsöffnungen im Luftdurchlassmantel des VLD gewährleistet einen horizontalen bzw. leicht nach oben gerichteten Luftaustritt und eine schnelle Vermischung mit der Raumluft.

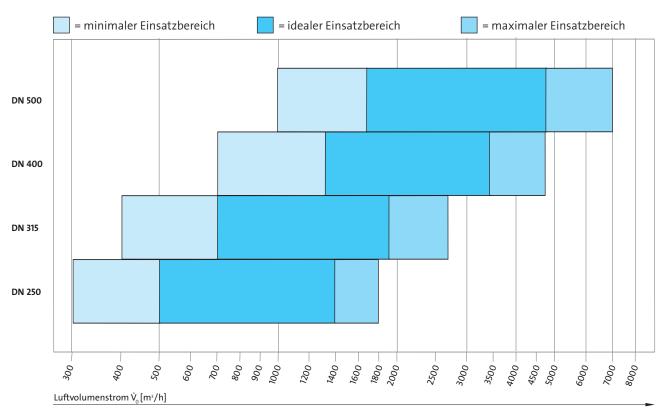
Heizfall/Vertikalstrahl am Beispiel VLD

Da Luftdurchlässe in der Regel in den oberen Raumbereichen installiert sind, müssen sie insbesondere in den Aufheizphasen während der Heizperiode warme Zuluft mit hohem Impuls senkrecht bis in die Aufenthaltszone ausblasen. Das obenstehende Bild zeigt die Strahlausbreitung des VLD, wenn die vier Bodenklappen vollständig geöffnet sind. Mit dem VLV wird die gleiche Strahlausbreitung erzeugt.

Verdrängungslüftung am Beispiel VLV

Insbesondere in schadstoffbelasteten Produktionsbereichen sollen die Schadstoffe möglichst ohne Vermischung direkt abgeführt werden.
Neben quellluftartiger Einbringung von Frischluft eignen sich hierfür Strömungsformen, bei denen die Zuluft mit geringem Impuls unmittelbar in den Arbeits- bzw. Aufenthaltsbereich geleitet wird und die schadstoffbelastete Luft verdrängt.

Das Bild zeigt eine solche Möglichkeit, die durch ein teilweises Öffnen der Bodenklappen entsteht. Über den Anstellwinkel der Klappen lässt sich der Strahlausbreitungswinkel beeinflussen.



Raumlufttechnische Daten VLD/VLV

Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	Mindestabstand [m]	y [m]
DN 250	30	450	10	~2	2,2
	40	650	20	2	3,1
	50	900	40	4	4,4
DN 315	30	850	10	~2	2,0
	40	1100	20	3	2,6
	50	1550	40	6	3,8
DN 400	30	1400	< 10	3	2,7
	40	1900	17	5	3,9
	50	2500	32	8	5,0
DN 500	30	2000	< 10	3	2,6
	40	2800	15	6	3,6
	50	4000	30	9	5,3

Festlegung: Mindestabstand bei Einbauhöhe 3,5 m, so dass Geschwindigkeiten im Aufenthaltbereich 0,2 m/s nicht überschreiten. Eindringtiefe im Heizfall y für ΔT = 15 K

Einsatzbereiche VLD/VLV

emcoair Industrieluftdurchlässe – Typ VLD/VLV

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-

durchlässe

Quellluftdurchlässe

Typ VLD / VLV

Stelle Variantenschlüssel für Typen VLD und VLV 1 = emcoair OVLD = Variabler Luftdurchlass VLD OVLV = Variabler Luftdurchlass VLV 2 - 5 0250 = 250 mm Nenngröße 0315 = 315 0400 = 400 0500 = 500 HZ = Handverstellung, zentral SZ = Schnurzuggetriebe El = elektrischer Stellmotor, innen BZ = Bowdenzug BK = Bowdenzug mit Kette EA = elektrischer Stellmotor, außen E3 = elektrischer Stellmotor, 230V 10 - 11 V = Werkstoff Korpus Stahl verzinkt 12 0000 = unlackiert 9010 = RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonder XXXX = RAL-Classic nach Wahl 13 - 16 ST = ohne Anschlusskasten AK = mit Anschlusskasten 17 - 18 M905 = Anschlusskasten RAL-Ton 9005 matt (20 - 34%) 0000 = unlackiert 9010 = RAL-Ton 9010 glänzend YYYY = Sonder CANC = entfällt 19 - 22 E = entfällt 0 = ohne Dichtlippen 1 = mit Dichtlippen Oberfläche Anschlusskasten Unternehmenssparte Nenngröße (mm) Werkstoff Korpus Preise variantengenau im Typenkonfigurator unter: Verstellung Oberfläche Artikel www.emco-klima.com/VLD www.emco-klima.com/VLV

1 OVLD 0250 HZ V 0000 ST M905 E = Beispiel

emcoair Verdrängungsluftdurchlass LDA

Der LDA dient zur Erzeugung einer drallfreien und induktionsarmen Verdrängungsströmung. Er ist ein verstellbarer Verdrängungsluftdurchlass zur zugfreien Einbringung aufbereiteter Zuluft in klimatisierte Räume und Hallen des Industriebereiches. Die LDA-Luftdurchlässe sind in vier Baugrößen DN 315/400/500/630 (Nenndurchmesser), die überschlägig einen sinnvollen Einsatzbereich von Einbauhöhen bis zu 18 m und Einzelvolumenströme bis zu 9.000 m³/h pro Durchlass abdecken, erhältlich.

Einsatzbereiche

- Flugzeuglackierhallen
- Industrie- und Montagehallen
- Produktionshallen
- Hallen des Werkzeugmaschinenbaus

Produktvorteile

- Variable Luftlenkung zur Realisierung der Eindringtiefen von 3 bis 18 m
- Impulsarme Luftverteilung
- Verhinderung von Raumluftinduktion im Nahbereich des Luftdurchlasses
- Manuelle, elektrische oder pneumatische Verstelleinrichtung

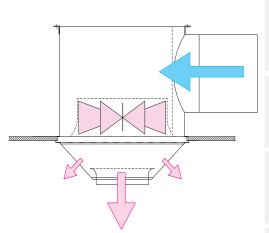
- Optional: Explosionsgeschützte Ausführung (Ex der Zone 2)
- Optional: Bestätigung der Silikonfreiheit aller Bauteile

Konstruktiver Aufbau

Der Luftdurchlass ist ausgeführt in Form eines düsenförmigen Rohrkörpers aus Aluminium/Stahlblech mit radial endendem Düsenauslauf. Er ist mit einem innenliegenden Leitapparat zur Erzeugung eines axialen oder radialen Luftstrahles (gesamter Volumenstrom) mittels sechs verstellbaren Schaufeln ausgerüstet. Die Ansteuerung des Zentralgetriebes erfolgt mit Hilfe einer Welle und der Kurvenscheibe. Ein in Luftrichtung nachgeschalteter Kegelstumpf in perforierter Ausführung mit eingebauter kreisförmiger Honeycomb-Wabe dient zur Strömungslenkung. Hierdurch wird eine gleichmäßige Beaufschlagung der Zuluft gewährleistet. Den Abschluss bildet die segmentierte Ausströmdüse die im Zentrum des Kegelstumpfes plaziert ist. Der verzinkte Anschlusskasten mit integriertem Leitapparat und dem Luftverteilelement (Kegelstumpf) bilden eine Einheit. Der Verdrängungsluftdurchlass des Typs LDA besteht aus den folgenden, nachstehend abgebildeten Kompo-

- Metallener Düsenkörper mit radial endendem Düsenauslauf
- 2. Drallschaufeleinsatz mit Verstelleinrichtung
- Kegelstumpf

 in perforierter Ausführung mit
 eingebauter kreisförmiger
 Honeycomb-Wabe
- **4. Metallene Abströmdüse** mit senkrechten Leitschaufeln



nenten:

Drallluftdurchlässe

Niedrige Eindringtiefen (Abb. 1)

Hohe Eindringtiefen (Abb. 2)

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluft-

durchlässe

Quellluft-

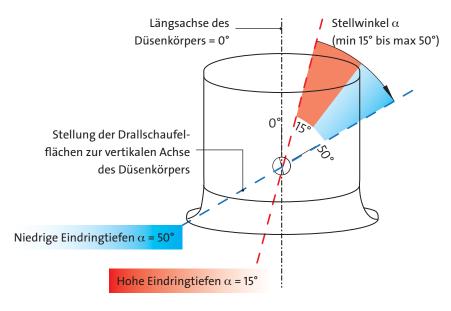
Funktionsweise:

Innerhalb des Düsenkörpers befindet sich ein Einsatz mit den Drallschaufeln zur Umlenkung der zugeführten Zuluft.

Der Stellwinkel der Drallschaufeln kann über einen multiplen Verstellmechanismus verstellt werden. Dadurch kann die Aufteilung der Luft in vertikale und horizontale Anteile in Abhängigkeit der Schaufelposition in einfacher Weise an hohe bzw. niedrige Eindringtiefen angepasst werden. In Abhängigkeit des Stellwinkels der Drallschaufeln bewirkt die Verstellung im Zusammenspiel mit den Gleichrichterelementen eine impulsarme Luftlenkung innerhalb des Düsenkörpers. Dadurch werden der Luft unterschiedliche Eindringtiefen von 3 bis 18 m und ein unterschiedliches Ausströmungsverhalten der Zuluft bei Austritt aus den Gleichrichterelementen und der Ausströmdüse aufgezwungen. Der Düsenkörper bildet dabei die räumliche Begrenzung des Zuluftstrahls.

Nach Austritt der Zuluft aus dem Düsenkörper kommt es zu einem Strömungsabriss und die zugeführte Luft sinkt relativ breitflächig und zugfrei nach unten um sich mit der vorhandenen Raumluft zu vermischen.

Für hohe Eindringtiefen (siehe Abb. 2) tritt bei steilem (kleinen) Stellwinkel der Drallschaufeln die zugeführte Luft nahezu ohne Rotation aus dem Düsenkörper aus und wird durch die verminderte Rotationsgeschwindigkeit und somit erhöhte Austrittsgeschwindigkeit in Bodennähe gelenkt.

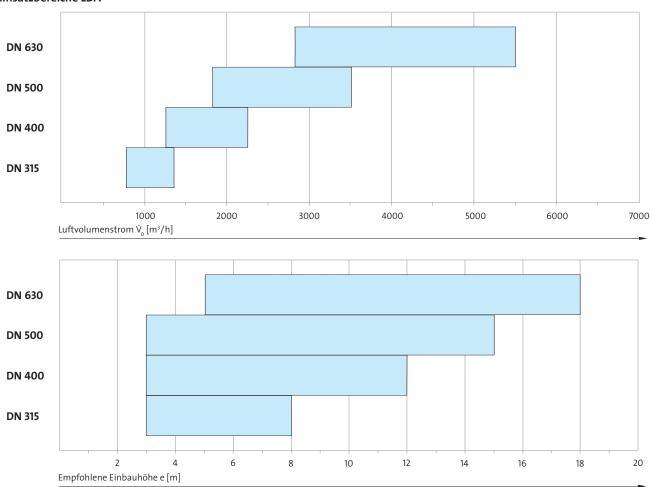

Der Stellwinkel α ist definiert als die Abweichung der Drallschaufelflächen zur vertikalen Achse des Düsenkörpers im Uhrzeigersinn (siehe Abb. unten).

Je nach Ausführungsvariante erfolgt die Verstellung der Drallschaufeln bzw. des Drallschaufeleinsatzes über unterschiedliche Verstelleinrichtungen. Beim LDA kommen die Verstelleinrichtungen HZ (zentral manuell) oder E (elektrisch) zum Einsatz (siehe Variantenschlüssel Seite 136).

durchlässe

Typ LDA

Drallschaufelstellungen



Raumlufttechnische Daten LDA

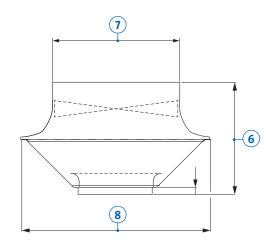
Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	Einbauhöhe [m]	Mindestabstand* [m]	y** [m]
DN 315	35 45 55	750 1000 1350	9 15 26	3 – 8	1,5 2,0 3,0	2,8 4,3 6,4
DN 400	35 45 55	1200 1750 2200	9 18 27	3 – 12	2,0 3,5 5,5	3,2 5,5 7,1
DN 500	35 45 55	1800 2700 3500	8 17 28	3 – 15	3,0 4,5 6,5	3,8 5,9 7,8
DN 630	35 45 55	2800 4200 5500	8 17 27	5 – 18	3,5 5,0 6,0	4,2 6,1 8,7

^{*} Die angegebenen Mindestabstände gelten für frei hängende Installation entsprechend der empfohlenen Einbauhöhen bei einem voreingestellten Drallschaufelwinkel von 50°.

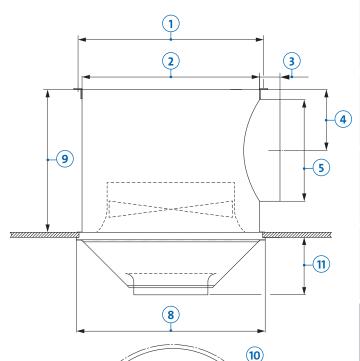
Einsatzbereiche LDA

^{**} Die vertikalen Einddringtiefen gelten für einen Drallschaufelwinkel von 15° und einer Zulufttemperaturdifferenz von +15 K.

Die vertikale Eindringtiefe sowie der Mindestabstand können durch Veränderung der Drallschaufelwinkel (manuell oder elektrisch) stufenlos angepasst werden.


Drallluftdurchlässe

Deckenluftdurchlässe


Schlitzluftdurchlässe

emcoair LDA – Abmessungen

Typ LDA ohne AK

Typ LDA mit AK

Quellluft-

Rundrohrluftdurchlässe

Industrieluft durchlässe

Ausführung HZ (LDA-HZ):

m. zentraler, manueller Schaufelverstellung (HZ)

Ausführung EI, EA, EE (LDA-EI...):

m. elektrischer Schaufelverstellung (EI, EA oder EE)

Ausführung PV (LDA-PV...):

m. pneumatischer Schaufelverstellung (PV)

Material bei allen Typen: - Düse: Stahlblech/Aluminium

- Leitwerk: Stahlblech

Nr.	Nenngröße DN	315	400	500	630	Einheit
1	Abstand Abhängepunkte	565	735	910	1145	mm
2	Ø Durchmesser Anschlusskasten	525	695	870	1105	mm
3	Länge Anschlusstutzen	100	100	100	100	mm
4	Abstand Oberkante Anschlussk./Mitte Anschlussstutzen	190	225	299	330	mm
5	\emptyset Durchmesser Anschlussstutzen (außen)	279	354	498	559	mm
6	Auslasshöhe gesamt	350	410	550	685	mm
7	Ø Anschlussdurchmesser (Rohrmaß)	318	403	503	633	mm
8	\emptyset Durchmesser Luftdurchlass (sichtbar)	580	750	925	1160	mm
9	Höhe Anschlusskasten	420	550	700	900	mm
10	Ø Durchmesser Abhängebohrung	9	9	9	9	mm
11	Höhe Kegelstumpf	175	195	270	330	mm

Stelle Variantenschlüssel für Typ LDA 1 = emcoair OLDA = Verdrängungsluftdurchlass LDA 2 - 5 0400 = 400 Nenngröße 0500 = 5000630 = 630 6 - 9 HZ = Handverstellung, zentral El = elektrischer Stellmotor, innen PV = Pneumatikverstellung EE = elektrischer Stellmotor "explosionsgeschützt" (nur Motor) EA = elektrischer Stellmotor, außen E3 = elektrischer Stellmotor, 230V 10 - 11 050 = 50° Einstellungswinkel XXX = Angabe des Einstellungswinkels in Grad 12 - 14 V = Werkstoff Luftdurchlass: Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A 15 M901 = RAL-Ton 9010 matt (15 - 29%) ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonder W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet 0000 = unlackiert UNBE = unbehandelt XXXX = RAL-Classic nach Wahl 16 - 19 0 = ohne Wabengleichrichter 1 = mit Wabengleichrichter 20 0 = Festwiderstand ohne Lochblech 4 = Lochblech mit 46% freiem Querschnitt 21 ST = ohne Anschlusskasten ME = mit METU-Schnellverschluss ohne Sicherungsseil MS = mit METU-Schnellverschluss mit Sicherungsseil AK = mit Anschlusskasten 22 - 23 0 = entfällt V = Werkstoff Anschlusskasten: Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A 24 E = entfällt S = Stutzenposition seitlich 25 E = entfällt 0 = ohne Drossel 1 = mit Drossel

emcoair Industrieluftdurchlässe – Typ LDA

Grundlagen und Systemvorteile

Drallluft-durchlässe

E = entfällt 0 = ohne Dichtlippen 1 = mit Dichtlippen 27

Werkstoff Anschlusskasten Stutzenposition Drossel

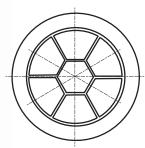
Einstellungswinkel (°Grad)

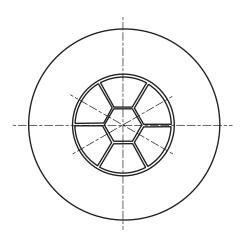
Werkstoff Luftdurchlass

Unternehmenssparte
Artikel
Nenngröße (mm)
A Verstellung
Nerkstoff Luftdurchlass
Oberfläche
O Wabengleichrichter
Festwiderstand
Anschluss
Anschluss
Stutzenposition
Drossel
Lippendichtung

Deckenluftdurchlässe

Schlitzluftdurchlässe


Preise variantengenau im Typenkonfigurator unter www.emco-klima.com/LDA


Rundrohrluftdurchlässe

> Quellluftdurchlässe

emcoair Drallluftdurchlass LDI

Der emcoair LDI wurde speziell für die anspruchsvolle Klimatisierung hoher Räume entwickelt. Dabei ist er ohne weiteres für einen freien Einbau ohne Deckenabschluss mit Ausblasöffnung nach unten geeignet, in Sonderfällen aber auch für eine seitlich gerichtete Installation.

Der einzelne Luftdurchlass besteht aus einem runden metallenen Düsenkörper mit radial breit auslaufendem Rand zur Nutzung des Coanda-Effektes. Die Zuluft wird dem Luftdurchlass in der Regel über Schläuche oder Rohre zugeführt und durchströmt vor Austritt in den Raum einen in die Düse integrierten Leitapparat, der sich im wesentlichen aus sechs stufenlos verstellbaren Schaufeln zusammensetzt.

Durch die stufenlose Verstellbarkeit des emcoair Luftdurchlasses LDI sind bei der Lenkung der Zuluft in hohen Räumen Geschwindigkeit, Eindringtiefe und Induktionsverhältnis nahezu beliebig den sich wechselnden Randbedingungen bei der Klimatisierung anzupassen.

Einsatzbereiche

- Produktionshallen
- Verwaltungszentren
- Kaufhäuser
- Versammlungsräume
- Mehrzweckhallen
- Druckereien
- Messe- und Ausstellungshallen

Produktvorteile

- Kontinuierliche Anpassung der Luftführung an planmäßige und/ oder zufällige Veränderungen der Betriebsbedingungen unter Einhaltung der Raumluftgeschwindigkeits-Grenzwerte
- Gezielte und energetisch höchst effiziente Zuführung des Frischluftvolumenstromes zum Aufenthaltsbereich
- Niedrige Installationskosten durch leichte Montierbarkeit
- Keine Bildung von Zugerscheinungen oder Kaltluftseen im Bodenbereich der Aufenthaltszonen
- Reduzierung der Energiekosten für Konditionierung und Transport der Luft bei Heizbetrieb
- Erhebliche Verkürzung der Aufheizzeiten durch bewusste Heraufsetzung der Strahleindringtiefe

Konstruktiver Aufbau

Der emcoair Drallluftdurchlass LDI ist in Form eines düsenförmigen Rohrkörpers ausgeführt, mit radial endendem Düsenauslauf.

Sechs Einzelschaufeln sind drehbar in eine zentrische Nabe eingelassen und bilden einen innenliegenden, stufenlos verstellbaren Leitapparat. Die Verstellung des Leitapparates kann manuell, pneumatisch oder elektromotorisch erfolgen.

Angeboten werden die Luftdurchlässe in den sechs Baugrößen 250/315/400/500/630/800 (Nenndurchmesser), die überschlägig einen sinnvollen Einsatzbereich von Einbauhöhen bis zu 30 m und Einzelluftvolumenströme bis zu 12.000 m³/h pro Durchlass abdecken.

Funktionsweise

Analog zum jeweiligen Schaufelwinkel werden der Luft unterschiedliche
Strömungsformen aufgezwungen,
vom runden Freistrahl bis hin zum axialen und radialen Drallstrahl. Damit
ist gewährleistet, dass alle Betriebsfälle der Kühlung, Lüftung oder Heizung
differenziert zu erfassen sind. Jedem
möglichen Lastszenario ist ein definiertes Winkelmaß zugeordnet.
Zudem lassen sich durch asymmetrische Voreinstellung der Schaufeln
Störeinflüsse infolge strömungstechnischer Hindernisse bei der Strahlausbreitung von vornherein umgehen.

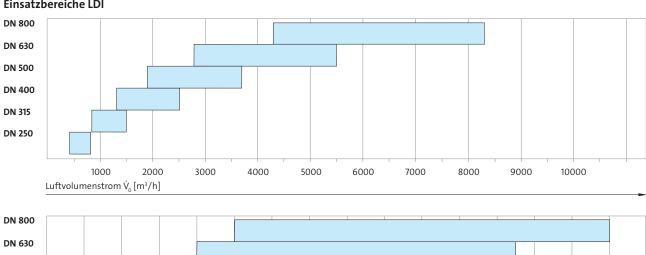
Drallluftdurchlässe

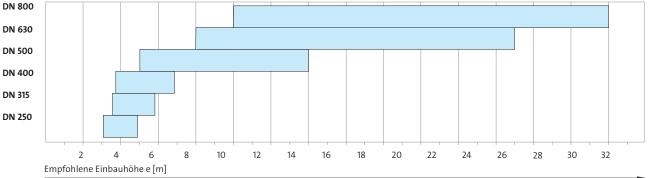
Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

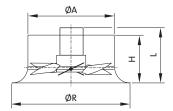

Typ LDI


Raumlufttechnische Daten LDI

Nenngröße [-]	L _{WA} [dB(A)]	\dot{V}_0 [m ³ /h]	Δp [Pa]	Einbauhöhe [m]	Mindestabstand [m]	y _{max} [m]
DN 250	40 410		31	3,0	2,0	2,5
	50 580		61	3,0	2,8	3,7
	60 810		119	3,0	3,9	5,5
DN 315	40	820	39	4,5	2,9	3,5
	50	1150	76	4,5	4,1	5,2
	60	1550	138	4,5	5,5	7,3
DN 400	40 50 60	50 1800		6,0 6,0 6,0	3,3 4,6 6,5	3,8 5,5 8,2
DN 500	40	1900	32	8,0	3,6	3,9
	50	2650	62	8,0	5,0	5,7
	60	3750	124	8,0	7,1	8,4
DN 630	40	2800	27	10,0	3,9	4,0
	50	3900	53	10,0	5,5	5,8
	60	5500	104	10,0	7,7	8,6
DN 800	40	4300	24	12,0	4,4	4,2
	50	6000	47	12,0	6,1	6,1
	60	8300	91	12,0	8,4	8,9

Die angegebenen Mindestabstände gelten für frei hängende Installation entsprechend der empfohlenen Einbauhöhen bei einem voreingestellten Drallschaufelwinkel von 60°. Die vertikalen Eindringtiefen gelten für einen Drallschaufelwinkel von 15° und einer Zulufttemperaturdifferenz zur Raumlufttemperatur von +15 K. Die vertikale Eindringtiefe sowie der Mindestabstand können durch Veränderung der Drallschaufelwinkel (elektrisch oder manuell) stufenlos angepasst werden.

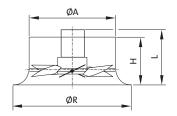
Einsatzbereiche LDI



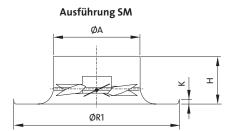
Ausführung SM ØA ØA ØR

Ausführung LDI/SM

mit separater, manueller Schaufelverstellung (S) und einfacher Düsenkontur (R), Material: Düse: Stahlblech/Aluminium, Leitwerk: Stahlblech

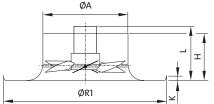

Ausführung El oder EA

Ausführung LDI/EI oder EA


mit elektrischer Schaufelverstellung (E) und einfacher Düsenkontur (R), Material: Düse: Aluminium, Leitwerk: Stahlblech

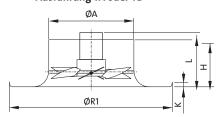
Ausführung TA oder TB

Ausführung LDI/TA oder TB


mit thermostatischer Schaufelverstellung (T) und einfacher Düsenkontur (R), Material: Düse: Aluminium, Leitwerk: Stahlblech

Ausführung LDI-V/SM

mit separater, manueller Schaufelverstellung (S) und verlängerter Düsenkontur (V), Material: Düse: Aluminium, Leitwerk: Stahlblech


Ausführung EI oder EA

Ausführung LDI-V/EI oder EA

mit elektrischer Schaufelverstellung (E) und verlängerter Düsenkontur (V), Material: Düse: Aluminium, Leitwerk: Stahlblech

Ausführung TA oder TB

Ausführung LDI-V/TA oder TB

mit thermostatischer Schaufelverstellung (T) und verlängerter Düsenkontur (V), Material: Düse: Aluminium, Leitwerk: Stahlblech

Größe	250	315	400	500	630	800
Maß Ø A mm	253	318	403	503	633	804
Maß Ø R mm	330	415	535	660	830	1100
Maß Ø R1 mm	480	580	750	925	1160	1420
Maß H mm	140	175	215	280	355	425
Maß K (nur LDI-V) mm	8	8	8	8	8	8
Masse [kg] SM	2,4	3,6	6,0	8,5	12,2	24,0
Masse [kg] LDI-V SM	2,7	3,8	6,3	8,9	14,5	30,0
Masse [kg] El oder EA	3,8	5,1	6,9	9,8	14,8	27,0
Masse [kg] LDI-V EI/EA	4,1	5,3	7,0	10,2	15,4	31,2
Masse [kg] TA oder TB	3,8	5,1	6,6	9,5	14,5	26,0
Masse [kg] LDI-V TA oder TB	4,1	5,3	6,7	9,9	15,1	30,2
Bauhöhe L (nur EI/EA) mm	285	295	300	325	345	425
Bauhöhe L (nur TA/TB) mm	270	280	290	290	355	425

Drallluft-

durchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Optionale Ausführung - TA/TB... (thermostatische Verstellung)

Bei der Ausführung -T mit thermostatischer Verstellung erfolgt die Verstellung der Schaufelwinkel durch thermostatisch wirkende Dehnstoffelemente, welche in Abhängigkeit von Änderung der Umgebungstemperatur einen zentralen Stellmechanismus betätigen.

Funktionsweise:

Das thermostatisch wirkende Dehnstoffelement steht über dem sternförmigen Leitkörper im Wärmeaustausch mit der Zuluft. Durch temperaturabhängige Volumenänderung des in einer Druckkapsel eingeschlossenen Elastomereinsatzes wird der Kolben bewegt der die Stellfunktion einleitet. Bei Temperaturerhöhung der Zuluft (Heizfall) dehnt sich das Elastomer aus und drückt den Kolben heraus.

Bei Temperaturabfall der Zuluft (Kühlfall) zieht sich das Elastomer im Kolben wieder zusammen.

Ein Federrückstellmechanismus bewirkt in diesem Fall die Rückstellung des Kolbens.

Die Hubbewegung des Kolbens wird dabei über eine Kombination von Stellhebeln in eine Drehbewegung der Drallschaufeln umgesetzt. Entsprechend dem Arbeitsbereich des Dehnstoffelementes werden Zulufttemperaturen zwischen 15°C und 40 °C über die Drallschaufelverstellung ausgesteuert.

Die Verstellzeiten sind abhängig von der Anströmgeschwindigkeit bezogen auf den Eintrittsdurchmesser des Quellluftdurchlasses und von der absoluten Änderung der Zuluftemperatur.

zentral angeordneter Verstellmechanismus

Stellzylinder mit thermostatischem Dehnstoffelement

Hinweis:

Rundrohrluftdurchlässe

Quellluftdurchlässe

Es ist zu beachten, dass diese Ansteuerung nur auf absolute Temperaturänderungen und nicht auf Temperaturdifferenzen reagiert. In bestimmten Übergangszeiten muss deshalb mit Abweichungen von den projektierten Luftzuständen gerechnet werden.

Typ LDI

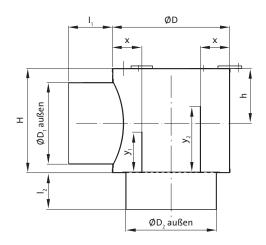
emcoair LDI Zubehör: Anschlusskasten Typ AK, rund

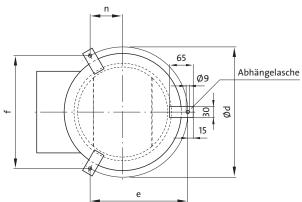
Oberfläche

- RAL9010 (Standardausführung)
- RAL Farbton nach Kundenwunsch (gegen Mehrpreis)
- Sonderlackierungen (auf Anfrage)
- Sonderoberflächen (auf Anfrage)

Zubehör

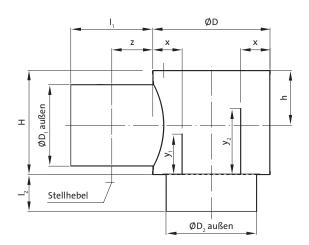
- Schnellverschluss, Flansch mit Gegenflansch
- Sicherungsseil für Schnellverschluss

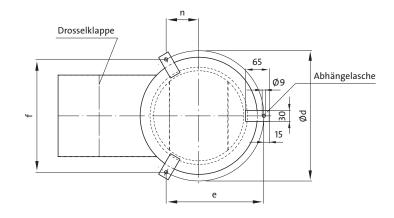

- Festwiderstand, ausgeführt als Lochblecheinsatz im Lufteintritt
- Honeycomp Wabengleichrichter
- Anschlusskasten, in runder Bauform
- Befestigungsflansch
- Ballwurfschutz
- Regel- und Steuerkomponente, (Temperaturdifferenzregelung) Typ TDR III


Option

- Lieferbare Stellmotore z. B. Fabr. Siemens, Joventa, (auf Anfrage)
- Außenliegender Stellmotor für die Drallschaufelverstellung
- LON-fähiger Stellmotor
- Anschlusskasten in Sonderausführung, abgestimmt auf den jeweiligen Anwendungsfall (auf Anfrage)
- Rechteckige bzw. quadratische Frontplatte, abgestimmt auf den jeweiligen Anwendungsfall (auf Anfrage)

emcoair LDI Zubehör – Abmessungen: Anschlusskasten Typ AK, rund





Тур АК

RAK-Größe DN	250	315	400	500	630
Maß Ø D	320	385	500	600	730
Maß H	285	360	440	530	640
Maß Ø D ₁	223	279	354	449	559
Maß Ø D ₂	248	313	398	498	628
Maß Ø d	356	425	540	640	770
Maß I ₁	120	120	200	200	200
Maß I ₂	100	100 110		190	240
Maß h	151	180	230	275	330
Maß e	267	319	405	480	578
Maß f	308	368	468	554	667
Maß n	89	106	135	160	193
Maß y ₁	110	130	170	205	250
Maß y ₂	180	215	300	340	415
Maß x	80	96	125	150	183
Gewicht	3,5	5,0	8,5	12,0	16,0

Anschlusskasten Typ AK, rund, mit Drosselklappe

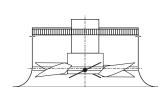
Abweichende Maße für Typ AK mit Drosselklappe

RAK-Größe DN	250	315	400	500	630
Maß I ₁	225	280	355	450	560
Maß z	112	140	177	225	183

Alle Maße in mm, Gewicht in kg

emcoair Industrieluftdurchlässe – Typ LDI

Lochblecheinsatz Ødi ≙ DN


Grundlagen und Systemvorteile

Drallluftdurchlässe

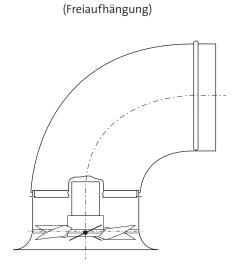
Deckenluftdurchlässe

Schlitzluftdurchlässe

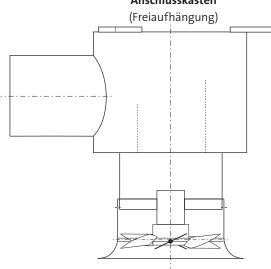
emcoair LDI Zubehör – Gleichrichter

Wabengleichrichter

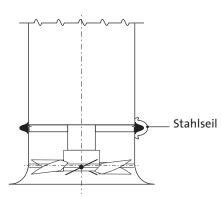
Empfohlen werden folgende Einbauvarianten


		Luftdu	rchlass	
Anschluss	Flexschlauch	Formstück	Anschlusskasten	Schnellverschluss
Freiaufhängung	-	X	X	X
Befestigungsflansch	X	-	-	-

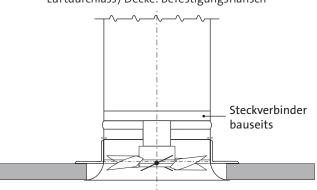
Rundrohrluftdurchlässe


Quellluftdurchlässe

Ausführungsbeispiele für Luftdurchlässe


Formstück

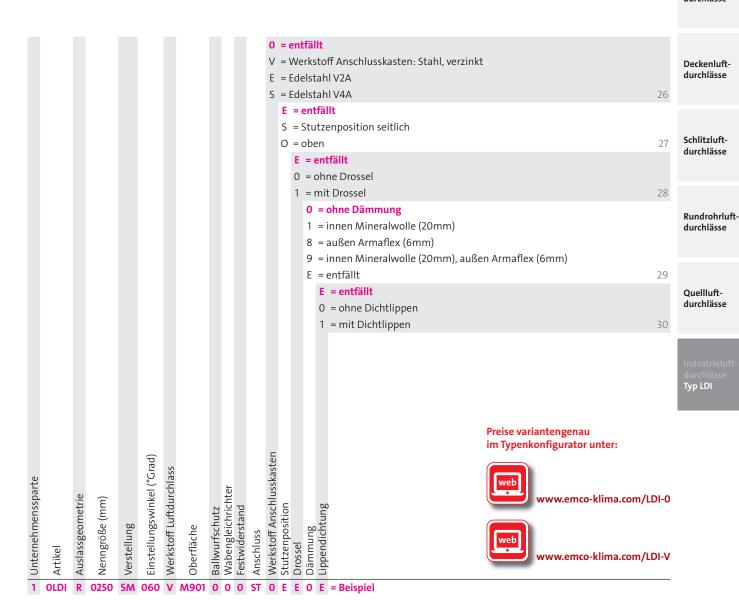
Anschlusskasten



Schnellverschluss

Flexschlauch Anschluss

Luftdurchlass/Decke: Befestigungsflansch


Var	iante	nschl	üssel	für	Тур L	DI				Stelle
1 :	= emc	oair								1
	OLDI	DI = Drallluftdurchlass LDI								
	LDIV	= Dra	Illuft	durch	lass L	DI-V				2 - 5
R = in runder Form (Typ LDI), runde Frontplatte mit verlängerter Ausblaskon								ontplatte mit verlängerter Ausblaskontur (Ty	p LDI-V)	
	Q = quadratische Frontplatte (nur Typ LDI)								6	
		0250 = 250 mm Nenngröße								
		03	315 =	315						
			100 =							
			500 =							
			530 =							
		08	300 =							7 - 10
						verstel				
									r (stetig), innen	
									r (stetig), außen	
									r ("explosionsgeschützt")	
									ellung Variante A (Startpunkt 20°C)	
									ellung Variante B (Startpunkt 15°C)	11 - 12
			1			lverstell 60° Ein		-		11 - 12
									tellungswinkels in Grad (min. 15° / max. 60°)	13 - 15
				^					tdurchlass: Stahl, verzinkt (Düsen aus Alumin	
						= Edel			adicinass. Stain, verzinke (Basen aus Alainn	
	S = Edelstahl V4A M901 = RAL-Ton 9010 matt (15 - 29%)						16			
	ONCS = NCS-Ton									
		00DB = DB-Lack								
			RALP = RAL-PEARL-Ton							
			RALG = RAL-Classic-Ton							
						YYYY	= 9	Sond		
			W320 = Edelstahl geschliffen							
		GGGG = Edelstahl gebürstet								
						0000	= (unlad	iert	
						UNBE	= E	Edels	hl unbehandelt	
						XXXX	= F	RAL-C	assic nach Wahl	17 - 20
							0	= oh	e Ballwurfschutz	
									Ballwurfschutz	21
									hne Wabengleichrichter	
									nit Wabengleichrichter	22
									ohne Lochblech	
									= Lochblech mit 21% freiem Querschnitt	
									= Lochblech mit 33% freiem Querschnitt	
									= Lochblech mit 46% freiem Querschnitt	22
								5	= Lochblech mit 58% freiem Querschnitt ST = ohne Anschlusskasten	23
									ST = onne Anschlusskasten ME = mit METU-Schnellverschluss ohne Siche	prungsseil
	MS = mit METU-Schnellverschluss mit Sicherungsseil						24 - 25			
									AK = mit Anschlusskasten	24 - 25

emcoair Industrieluftdurchlässe – Typ LDI

Grundlagen und Systemvorteile

Drallluftdurchlässe

emcoair Quellluftdurchlass LUWIRO

Der LUWIRO Quellluftdurchlass ist ein Säulenquelldurchlass für den Arbeits- und Produktionsbereich. Die eintretende Zuluft wird durch einen Drallschaufeleinsatz in Rotation versetzt und tritt gleichmäßig über die gesamte perforierte Zylinderfläche aus.

Mit Hilfe der Drallschaufeln kann dieser Durchlass in einfacher Weise den Einsatzbedingungen im Kühl- und Aufheizfall angepasst werden. Der Durchlass besteht aus einem perforierten Lochblechzylinder, in dessen zuluftseitiger Grundfläche ein Dralleinsatz mit verstellbarem Schaufelwinkel installiert ist.

Der stirnseitige Zylinderabschluss wird durch eine fest verankerte Kreisringblende gebildet. Durch seinen multiplen Verstellmechanismus kann der emcoair Quellluftdurchlass LUWIRO als Schlüsselkomponente einer in hohem Maße dekontaminierenden Klimatisierung von Industriehallen gelten; er arbeitet dabei energetisch äußerst rationell und ergonomisch überaus effizient.

Einsatzbereiche

- Verwaltungszentren
- Restaurants
- Sporthallen
- Industriehallen
- Laboratorien
- Schadstoffbelastete Arbeitsplätze

Produktvorteile

- Niedrige Strömungsgeschwindigkeiten im Aufenthaltsbereich
- Gesteigerte Luftqualität im Aufenthaltsbereich
- Abführbare Leistung von 30 W/m² bis 50 W/m² (in Abhängigkeit vom Aktivitätsgrad)
- Fast beliebig zu platzieren
- Geeignet für Kühl- und Heizbetrieb

Konstruktiver Aufbau

Der Luftdurchlasskörper besteht aus einem perforierten Lochblechzylinder, aus dem die Luft gleichmäßig über die gesamte Zylinderhöhe möglichst impulsarm in den Raum eintritt. Um dies zu erreichen, wird die in den Luftdurchlass eintretende Luft mit einem Drallschaufeleinsatz in Rotation versetzt, so dass sich die Luft gleichmäßig an die Innenseite des

Lochblechzylinders anlegt. Durch eine eingesetzte Wabe (an der Innenseite des Lochbleches befestigt) wird eine radiale Abströmung über die gesamte Austrittsfläche gewährleistet.

Die Durchlässe sind erhältlich in Baugrößen 200/250/315/355/400/450 500/560 und 630 – entsprechend dem Zylinderdurchmesser – alternativ für Bodenaufstellung oder Aufhängung ausgebildet.
Verstellmechanismus manuell, elektrisch oder thermostatisch mit Ansteuerung über Temperaturdifferenzmesser. Nennvolumenströme zwischen 400 und 7900 m³/h pro Durchlass. Zylinderkörper standardmäßig aus verzinktem Stahlblech; Sonderwerkstoffe auf Anfrage. Farbgebung gemäß Wunsch.

Drallluftdurchlässe

Funktionsweise

Bei kleinem Schaufelwinkel wird die Zuluft in starke Rotation versetzt und induziert dabei je nach Wirbelintensität über die Abschlussblende additiv Raumluft.

Der Widerstand des Lochbleches wird durch die aufgeprägte Zentrifugalkraft unter Druckabfall des sich einstellenden Raumluft-Zuluft-Gemisches überwunden, das somit radial über die durch Drallkörper und Blende begrenzte Mantelteilfläche ausströmt. Bei großen Schaufelwinkeln ergibt sich die Drallintensität der Zuluft deutlich reduziert. Eine Raumluftinduktion kann sich nicht mehr einstellen. Vielmehr tritt ein Teil der Zuluft über die Abschlussblende mit einer gewissen Restrotation nach

außen, während sich die radiale Abströmung über die vom Dralleinsatz und Blende definierte Zylinderfläche entsprechend abgeschwächt zeigt.

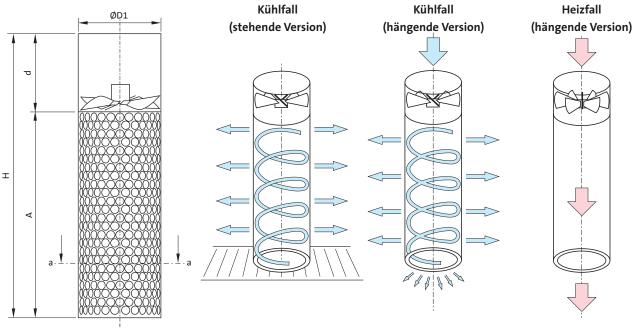
Stehende Version

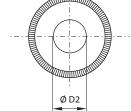
Der Quellluftdurchlass LUWIRO in der Ausführung SM (Handverstellung manuell) findet seinen Hauptanwendungsfall in der stehenden Version. Bodennahe Aufstellung (0-50 cm).

Dabei wird der Durchlass im Aufenthaltsbereich in geringem Abstand zum Arbeitsplatz installiert. Hierbei werden die Schadstoffe aus der Aufenthaltszone über die Konvektionsströmung der Abluft zugeführt.

Hängende Version

Bei der hängenden Anordnung kommen die LUWIRO der Ausführung ZS, BZ, BK, TA, TB, EI oder E3 zum Einsatz. Dabei wird der Durchlass in einer Höhe bis zu ca. 3 m über dem Fußbo-den montiert. Bei dieser Form der Anordnung ist die Austrittsgeschwindigkeit grundsätzlich höher gegenüber der Standsäule anzusetzen, um einem frühzeitigen Abfallen der kälteren Luft entgegenzuwirken. Um die Schadstoffkonzentration im Aufenthaltsbereich möglichst gering zu halten, ist der LUWIRO in der stehenden wie auch in der hängenden Ausführung möglichst im Nahbereich des Arbeits- bzw. Produktionsbereiches zu montieren.


Deckenluftdurchlässe


Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluft durchlässe Typ LUWIRO

Schnitt a-a

LUWIRO (Quellluftdurchlass)

Größe	200	250	315	355	400	450	500	560	630
Maß A	1000	1000	1100	1100	1250	1500	1500	1700	2000
Maß d	400	400	400	400	400	400	400	400	400
Maß ØD1	203	253	318	357	403	453	503	563	633
Maß ØD2	91	115	145	162	180	200	225	255	285
Maß H	1400	1400	1500	1500	1650	1900	1900	2100	2400

Raumlufttechnische Daten LUWIRO

Nenngröße [mm]	Version	V _{min} [m³/h]	V _{max} [m³/h]	V _{nenn} [m³/h]	für V _{nenn} Δp [Pa]	für V _{nenn} L _{WA} [dB(A)]	Mindestab- stand* [m]	y* [m]
DN 200	stehend hängend	400 700	700 900	600 800	35 65	47 57	≈ 2	4
DN 250	stehend hängend	700 1000	1000 1400	900 1200	35 65	47 57	≈ 2	4
DN 315	stehend hängend	1000 1500	1800 2100	1600 1900	35 65	47 57	≈ 2	4
DN 355	stehend hängend	1200 1800	1900 2600	1800 2200	35 65	47 57	≈ 2	4
DN 400	stehend hängend	1800 2100	2000 3100	1900 2900	35 65	47 57	≈ 2	4
DN 450	stehend hängend	1800 2700	2700 4000	2200 3200	35 65	47 57	≈ 2	4
DN 500	stehend hängend	2000 3200	3200 4700	2900 4000	35 65	47 57	≈ 2	4
DN 560	stehend hängend	2800 4300	4300 6300	3200 4500	35 65	47 57	≈ 2	4
DN 630	stehend hängend	3200 5300	5500 7900	4500 7000	35 65	47 57	≈ 2	4

^{*} Geringere Mindestabstände und höhere vertikale Eindringtiefe (y) nach Rücksprache mit emco Klima Planungsservice möglich (y für $\Delta T = +10K$)

Drallluftdurchlässe

Optionale Ausführung - TA oder TB... (thermostatische Verstellung)

Bei der Ausführung -T mit thermostatischer Verstellung erfolgt die Verstellung der Schaufelwinkel durch ein thermostatisch wirkendendes Dehnstoffelemente, welche in Abhängigkeit von Änderung der Umgebungstemperatur einen zentralen Stellmechanismus betätigen.

Funktionsweise:

Das thermostatisch wirkende Dehnstoffelement steht über dem sternförmigen Leitkörper im Wärmeaustausch mit der Zuluft. Durch temperaturabhängige Volumenänderung des in einer Druckkapsel eingeschlossenen Elastomereinsatzes wird der Kolben bewegt, der die Stellfunktion einleitet. Bei Temperaturerhöhung der Zuluft (Heizfall) dehnt sich das Elastomer aus und drückt den Kolben heraus.

Bei Temperaturabfall der Zuluft (Kühlfall) zieht sich das Elastomer im Kolben wieder zusammen. Ein Federrückstellmechanismus be-

Ein Federrückstellmechanismus bewirkt in diesem Fall die Rückstellung des Kolbens.

Die Hubbewegung des Kolbens wird dabei über eine Kombination von Stellhebeln in eine Drehbewegung der Drallschaufeln umgesetzt. Entsprechend dem Arbeitsbereich des Dehnstoffelementes werden Zulufttemperaturen zwischen 15°C und 40°C über die Drallschaufelverstellung ausgesteuert.

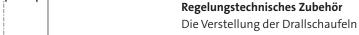
Die Verstellzeiten sind abhängig von der Anströmgeschwindigkeit bezogen auf den Eintrittsdurchmesser des Quellluftdurchlasses und von der absoluten Änderung der Zuluftemperatur.

zentral angeordneter Verstellmechanismus Stellzylinder mit thermo-

Stellzylinder mit thermostatischem Dehnstoffelement

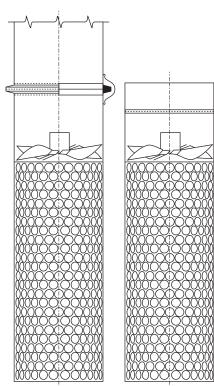
Hinweis:

Es ist zu beachten, dass diese Ansteuerung nur auf absolute Temperaturänderungen und nicht auf Temperaturdifferenzen reagiert. In bestimmten Übergangszeiten muss deshalb mit Abweichungen von den projektierten Luftzuständen gerechnet werden.


Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe


Quellluftdurchlässe

Industrieluft durchlässe Typ LUWIRO

kann motorisch erfolgen, wobei die Ansteuerung durch eine Temperaturdifferenzmessung zwischen Zu- und Raumluft vorgenommen wird. Bei nur geringen Temperaturunterschieden zwischen Zuluft und Raumluft (über die Betriebszeit) können die Durchlässe auch als separat manuell einstellbare Elemente eingesetzt werden. Ein nachträgliches Verstellen

des Drallschaufelwinkels ist hier im einzelnen mittels mitgeliefertem Spezialschlüssel möglich.
Unter der Voraussetzung, dass in den Hallen sowohl ein Aufheiz- als auch ein Kühlfall auftritt, ist eine motorische Einstellung über eine Temperaturdifferenzsteuerung – zumindest eines Teiles der Durchlässe – notwendig bzw. zu empfehlen.

Schnellverschluss mit Sicherungsteil

Lochblecheinsatz

Variantenschlüssel für Typ LUWIRO Stelle 1 = emcoair 2 - 5 LUWI = Quellluftdurchlass LUWIRO 0200 = 200 mm Nenngröße 0250 = 250 0315 = 315 0355 = 355 0400 = 400 0450 = 450 0500 = 500 0560 = 5600630 = 630 6 - 9 SM = Handverstellung, separat ZS = zentrale manuelle Verstellung über Stellhebel BZ = Verstellung über Bowdenzug mit Handhebel TA = thermostatische Verstellung Variante A (Startpunkt 20°C) TB = thermostatische Verstellung Variante B (Startpunkt 15°C) EI = elektrischer Stellmotor (stetig), innen (24V) E3 = elektrischer Stellmotor (stetig), innen (230 V) 10 - 11 VH = Montage: vertikal hängend HH = horizontal hängend SO = stehend ohne Heizaufsatz 12 - 13360 = 360° $090 = 90^{\circ}$ 180 = 180° 270 = 270° 14 - 16 V = Werkstoff Luftdurchlass: Stahl, verzinkt E = Edelstahl V2A S = Edelstahl V4A 0000 = unlackiert 9010 = RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonder W320 = Edelstahl geschliffen GGGG = Edelstahl gebürstet UNBE = Edelstahl unbehandelt XXXX = RAL-Classic nach Wahl 18 - 21 0 = ohne Wabengleichrichter 1 = mit Wabengleichrichter 22 0 = ohne Lochblech 4 = Lochblech mit 46% freiem Querschnitt 23 00 = ohne Verbinder ME = mit METU-Schnellverschluss ohne Sicherungsseil MS = mit METU-Schnellverschluss mit Sicherungsseil 24 - 25 0 = ohne Wandbefestigung W = mit Wandbefestigung 26 Werkstoff Luftdurchlass Unternehmenssparte Wabengleichrichter Einstellungswinkel (°Grad) Nenngröße (mm) Festwiderstand Befestigung Verstellung Oberfläche Preise variantengenau Anschluss Montage im Typenkonfigurator unter Artikel www.emco-klima.com/LUWIRO 1 LUWI 0200 SM VH 360 V 0000 0 0 00 0 = Beispiel

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

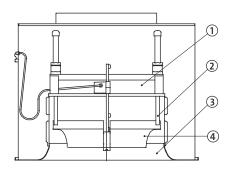
Industrieluftdurchlässe Typ WKD380

emcoair Wirbelkammer-Drallluftdurchlass WKD380

Der WKD380 ist ein hochinduktiver Dralldurchlass mit runder Frontplatte und im Anschlusskasten integrierter Wirbelkammer aus Spezialkiemenblech (schwarz einbrennlackiert), sowie einer Steuerdüse. Er ist hervorragend geeignet für den Heiz- und Kühlbetrieb im Bereich der Komfortund Industrieklimatisierung. Die Strahlausbreitung lässt sich durch Handverstellung beeinflussen bzw. durch einen Stellmotor der Lastsituation anpassen.

Der WKD380 erlaubt mit seinen Verstelleinrichtungen die stetige Anpassung der Strahlrichtung (horizontal bis vertikal) und Eindringtiefe an die thermische Raumlast und Raumhöhe. Aufgrund seiner großen Flexibilität ist er dadurch auch für große Raumhöhen geeignet. Insbesondere durch die integrierte Weitwurfdüse werden im Heizbetrieb große vertikale Eindringtiefen erreicht.

Einsatzbereiche

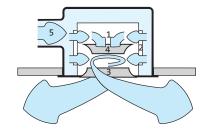

- Komfortbereich
- Büroräume
- Versammlungsräume
- EDV-Räume
- Messehallen
- Kaufhäuser
- Gewerbe- und Industrieräume
- Reinräume
- Luftvolumenströme von 700 m³/h bis 10.000 m³/h bei Raumhöhen von 3 m bis 20 m und Temperaturdifferenzen von -15 K bis 30 K

Produktvorteile

- Stetige Steuerung der Strahlrichtung von Horizontal- bis Vertikalstrahl
- Stetige Veränderung der Eindringtiefe des Horizontal- wie des Vertikalstrahles durch Beeinflussung der Drallstärke und Induktion
- Höchste vertikale Eindringtiefen im Heizfall durch integrierte Weitwurfdüse
- Regelbare Primärinduktion
- Einfache Verstellung von Hand oder motorisch
- Problemlos koppelbar mit Temperaturdifferenzregelung zur vollautomatischen Steuerung von mehreren Durchlässen

Konstruktiver Aufbau

Der Wirbelkammer-Dralldurchlass WKD380 besteht aus einer zylindrischen Wirbelkammer (1), auf deren Umfang Luftlenkelemente (2) angeordnet sind, einem Luftdurchlassdiffusor (3) und einer von Hand oder motorisch verstellbaren Steuerdüse (Weitwurfdüse) (4).

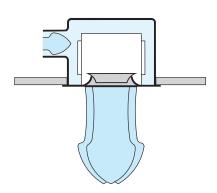


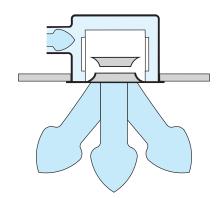
Funktionsweise

Die über das Kiemenblech tangential in die Wirbelkammer (1) einströmende Luft bildet eine intensive Drallströmung.

Der oberhalb der Düse eintretende Luftanteil (5) wird durch die Gleichrichterwirkung der Düse (4) in seiner Drallstärke reduziert.

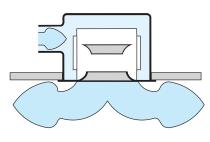
Durch die Position der Düse kann somit der Gesamtdrall der austretenden Luft derart verändert werden, dass sowohl Horizontal- als auch Vertikalstrahlen variabler Induktion und Eindringtiefen erzeugt werden.

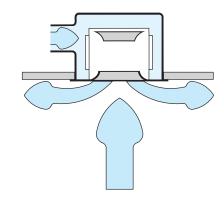



Heizbetrieb (Düsenposition 1)

Ausgeprägter Vertikalstrahl mit großen Eindringtiefen

Heizbetrieb (Düsenposition 2)


Vertikalstrahl mit überlagertem Drall


Kühlbetrieb (Düsenposition 3)

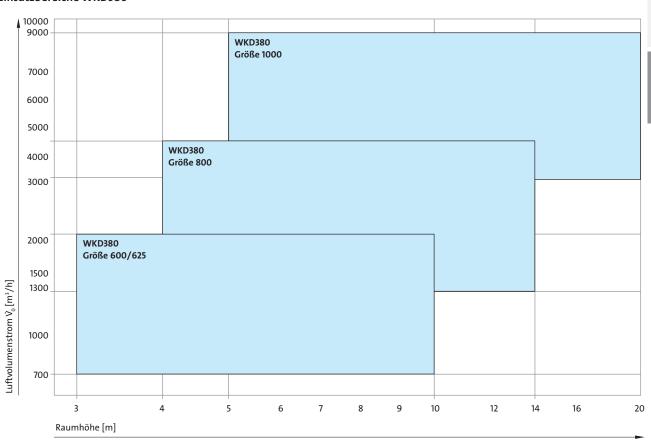
Horizontalstrahl mit verminderter Drallstärke und relativ geringer Eindringtiefe

Kühlbetrieb (Düsenposition 4)

Horizontalstrahl (auch ohne Deckeneinfluss) mit max. horizontaler Eindringtiefe und hoher Primärinduktion

Drallluftdurchlässe

Deckenluftdurchlässe

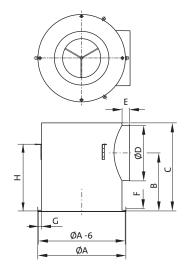

Schlitzluftdurchlässe

Raumlufttechnische Daten WKD380

Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	Mindestabstand [m]	y [m]
DN 600/625	30	650	14	~ 2	4,0
	40	900	27	~ 2	6,0
	50	1200	50	3	8,0
DN 800	40	1550	12	~2	6,5
	50	2400	28	3	10,0
	60	3600	65	8	12,0
DN 1000	45	2400	14	2	6,0
	55	3600	33	7	9,0
	65	5500	75	14	12,0

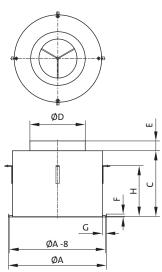
Festlegung: Mindestabstand bei frei hängendem Einbau in 4 m Höhe, so dass Geschwindigkeiten im Aufenthaltbereich 0,2 m/s nicht überschreiten. Eindringtiefe im Heizfall y für $\Delta T = 10K$

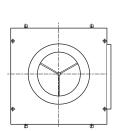
Einsatzbereiche WKD380



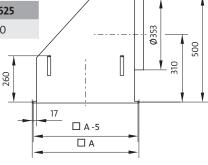
Rundrohrluftdurchlässe

Quellluftdurchlässe


Industrieluftdurchlässe Typ WKD380


WKD380 rund, Anschluss seitlich

Größe	DN 600	DN 625	DN 800	DN 1000
Maß ØA	600	623	800	1080
Maß B	310	310	300	350
Maß C	500	500	700	800
Maß Ø D	353	353	498	598
Maß E	50	50	60	60
Maß F	7	12	15	15
Maß G	15	15	15	5
Maß H	460	460	610	710


WKD380 rund, Anschluss oben

Größe	DN 600	DN 625	DN 800	DN 1000
Maß ØA	600	623	800	1080
Maß C	500	500	700	800
Maß Ø D	398	398	498	598
Maß E	50	50	60	60
Maß F	7	12	15	15
Maß G	17	17	5	5
Maß H	410	410	610	710

WKD380 quadratisch, Anschluss seitlich

Größe	DN 600	DN 625	
Maß □ A	595	620	/
			/.

WKD380 quadratisch, Anschluss oben

Größe	DN 600	DN 625
Maß □ A	600	620

emcoair Industrieluftdurchlässe – Typ WKD380

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluft-

durchlässe

Rundrohrluft-

durchlässe

Quellluftdurchlässe

Typ WKD380

Stelle Variantenschlüssel für Typ WKD380 1 = emcoair WKD0 = Wirbelkammer-Drallluftdurchlass WKD380 2 - 5 R = in runder Form Q = in quadratischer Form 0600 = 600 mm Nenngröße 0625 = 625 0800 = 800 (nur Version R)1000 = 1000 (nur Version R) 7 - 10 HZ = Handverstellung, zentral El = elektrischer Stellmotor (stetig), innen 11 - 12 9010 = Frontplatte RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-TonRALG = RAL-Classic-Ton YYYY = Sonder 0000 = unlackiert XXXX = RAL-Classic nach Wahl 13 - 16 0 = ohne Ballwurfschutz 17 1 = mit Ballwurfschutz M905 = AK RAL-Ton 9010 matt (15 - 29%) 0000 = unlackiert 9010 = RAL-Ton 9010 glänzend YYYY = Sonder 18 - 21 S = Stutzenposition seitlich 22 O = oben0 = ohne Drossel 23 0 = ohne Dämmung 1 = mit Dämmung innen (20 mm Mineralwolle) 8 = mit Dämmung außen (6 mm Armaflex) 9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex) Oberfläche Anschlusskasten Unternehmenssparte Auslassgeometrie Nenngröße (mm) Stutzenposition Ballwurfschutz Drossel Dämmung Verstellung Oberfläche Preise variantengenau im Typenkonfigurator unter Artikel www.emco-klima.com/WKD380

1 WKD0 R 0600 HZ 9010 0 M905 S 0 0 = Beispiel

emcoair Wirbelkammer-Drallluftdurchlass WKD381

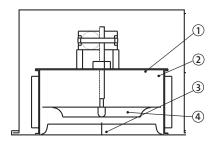
Der WKD381 ist ein hochinduktiver Dralldurchlass mit quadratischer oder runder Frontplatte und im Anschlusskasten integrierter Wirbelkammer mit ringförmig angeordneten, exzentrisch gelagerten Luftlenkwalzen aus ABS mit Gleichrichtern sowie einer Steuerdüse.

Er ist hervorragend geeignet für den Heiz- und Kühlbetrieb im Bereich der Komfort- und Industrieklimatisierung. Die Strahlausbreitung lässt sich durch Handverstellung beeinflussen bzw. durch einen Stellmotor der Lastsituation anpassen.

Der WKD381 erlaubt mit seinen Verstelleinrichtungen die stetige Anpassung der Strahlrichtung (horizontal bis vertikal) und Eindringtiefe an die thermische Raumlast und Raumhöhe. Aufgrund seiner großen Flexibilität ist er dadurch auch für große Raumhöhen geeignet.

Insbesondere durch die integrierte Weitwurfdüse werden im Heizbetrieb große vertikale Eindringtiefen erreicht.

Einsatzbereiche


- Komfortbereich
- Büroräume
- Versammlungsräume
- EDV-Räume
- Messehallen
- Kaufhäuser
- Gewerbe- und Industrieräume
- Reinräume

Produktvorteile

- Stetige Steuerung der Strahlrichtung von Horizontal- bis Vertikalstrahl
- Stetige Veränderung der Eindringtiefe des Horizontal- wie des Vertikalstrahles durch Beeinflussung der Drallstärke und Induktion
- Höchste vertikale Eindringtiefen im Heizfall durch integrierte
 Weitwurfdüse
- Regelbare Primärinduktion
- Einfache Verstellung von Hand oder motorisch
- Hohe Luftvolumenströme bei geringen Schallleistungspegeln
- Problemlos koppelbar mit Temperaturdifferenzregelung zur vollautomatischen Steuerung von mehreren Luftdurchlässen

Konstruktiver Aufbau

Der Wirbelkammer-Dralldurchlass WKD381 besteht aus einer zylindrischen Wirbelkammer (1), auf deren Umfang Luftlenkwalzen (2) angeordnet sind, einem Luftdurchlassdiffusor (3) und einer von Hand oder motorisch verstellbaren Steuerdüse (Weitwurfdüse) (4).

Funktionsweise:

Siehe Funktionsweise WKD380

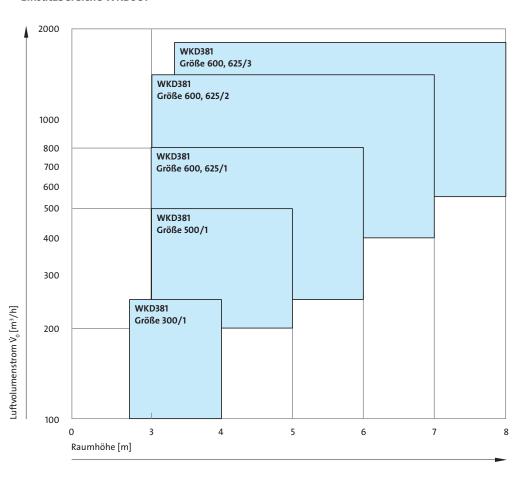
Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

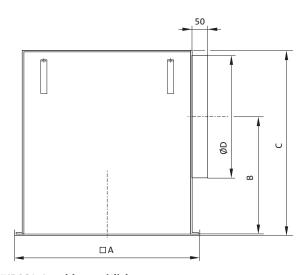
Rundrohrluftdurchlässe

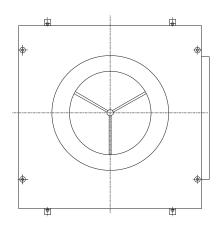
Raumlufttechnische Daten WKD381


Nenngröße [-]	L _{WA} [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp[Pa]	Mindestabstand [m]	x _{krit} [m]	y [m]	
DN 300/1	30 40 45	160 200 250	60 100 150	~2 ~2 ~2	1,3 1,7 2,0	7,0 9,0 11,0	
DN 500/1	30 35 40	240 300 400	17 30 50	~2 ~2 ~2	1,3 1,7 2,2	3,0 3,7 5,0	
DN 600/1 DN 625/1	30 35 40	320 400 520	15 26 45	~2 ~2 2	1,1 1,4 1,8	2,8 3,6 4,7	
DN 600/2 DN 625/2	30 35 40	500 650 850	15 25 45	2 3 5	1,7 2,3 3,0	4,5 5,5 7,5	
DN 600/3 DN 625/3	30 35 40	800 1000 1200	20 30 45	4 6 8	1,6 2,0 2,4	7,5 9,0 11,0	

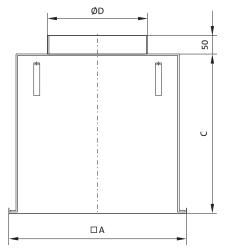
Festlegung: Mindestabstand bei Einbauhöhe 3,0 m, so dass Geschwindigkeiten im Aufenthaltsbereich 0,2 m/s nicht überschreiten. Kritischer Strahlweg für $\Delta T = -8$ K; Eindringtiefe im Heizfall y für $\Delta T = +10$ K

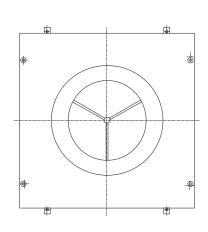
Industrieluft durchlässe Typ WKD381


Quellluftdurchlässe


Einsatzbereiche WKD381

Anschlusskasten WKD381 mit seitlichem Stutzen





WKD381, Anschluss seitlich

Größe	DN	300/1	500/1	600/1	625/1	600/2	625/2	600/3	625/3
Schlitzhöhe	[mm]	100	100	100	100	200	200	300	300
Maß □ A/Ø A	[mm]	300	500	600	620	600	620	600	620
Maß B	[mm]	210	285	260	260	310	310	385	385
Maß C	[mm]	300	400	400	400	500	500	600	600
Maß Ø D	[mm]	148	198	248	248	353	353	398	398

Anschlusskasten WKD381 mit Stutzen von oben

WKD381, Anschluss oben

Größe	DN	300/1	500/1	600/1	625/1	600/2	625/2	600/3	625/3
Schlitzhöhe	[mm]	100	100	100	100	200	200	300	300
Maß □ A/Ø A	[mm]	300	500	600	620	600	620	600	620
Maß C	[mm]	400	400	400	400	500	500	600	600
Maß Ø D	[mm]	148	198	248	248	353	353	398	398

emcoair Industrieluftdurchlässe – Typ WKD381

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ WKD381 1 = emcoair WKD1 = Wirbelkammer-Drallluftdurchlass WKD381 (Schlitzhöhe 100 mm) Deckenluftdurchlässe WKD2 = Wirbelkammer-Drallluftdurchlass WKD381 (Schlitzhöhe 200 mm) WKD3 = Wirbelkammer-Drallluftdurchlass WKD381 (Schlitzhöhe 300 mm) 2 - 5 Q = in quadratischer Form R = in runder Form 6 Schlitzluft-0300 = 300 mm Nenngröße (nur WKD1) durchlässe 0500 = 500 mm (nur WKD1) $0600 = 600 \, \text{mm}$ $0625 = 625 \, \text{mm}$ 7 - 10 HZ = Handverstellung, zentral Rundrohrluft-El = elektrischer Stellmotor (stetig), innen 11 - 12 durchlässe 9010 = Frontplatte RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton Quellluftdurchlässe RALG = RAL-Classic-Ton YYYY = Sonder E6C0 = naturfarbig eloxiert 0000 = unlackiert XXXX = RAL-Classic nach Wahl 13 - 16 Typ WKD381 0 = ohne Ballwurfschutz 1 = mit Ballwurfschutz 17 M905 = AK RAL-Ton 9010 matt (15 - 29%) 0000 = unlackiert 9010 = RAL-Ton 9010 glänzend YYYY = Sonder 18 - 21 S = Stutzenposition seitlich O = oben0 = ohne Drossel 23 0 = ohne Dämmung 1 = mit Dämmung innen (20 mm Mineralwolle) 8 = mit Dämmung außen (6 mm Armaflex) 9 = mit Dämmung innen (20 mm Mineralwolle) und außen (6 mm Armaflex) Preise variantengenau im Typenkonfigurator unter: ww.emco-klima.com/WKD381-1 Oberfläche Anschlusskasten Unternehmenssparte Auslassgeometrie www.emco-klima.com/WKD381-2 Venngröße (mm) Stutzenposition Ballwurfschutz /erstellung Oberfläche ww.emco-klima.com/WKD381-3

WKD1 Q 0300 HZ 9010 0 M905 S 0 0 = Beispiel

Weitwurfdüsen.

Weitwurfdüsen sorgen für eine äußerst gleichmäßige Luftverteilung über Räume mit großen Höhen. Mit verstellbaren Weitwurfdüsen können sowohl die Wurfweite (Tiefenwirkung) als auch die Flächenabdeckung (Wirkungsbereich) an die gegebene Situation angepasst werden. Hierdurch ist der Transmissionswärmebedarf deutlich geringer als bei konventioneller Lufterwärmung. Durch die höhere Induktionswirkung kann mit niedrigen Lufttemperaturgradienten und sehr hohen Induktionsraten gerechnet werden. Es bilden sich keine Wärmestaus unter der Decke. Auch der Wärmeverlust durch die Decke nach außen wird wesentlich geringer. Je nach Gebäudehöhe ergeben sich beim Einsatz von Weitwurfdüsen hohe Energieeinsparungen.

Diese Vorteile werden ergänzt durch geringe Betriebskosten und flexible Anpassungsmöglichkeiten. Die Funktionsweise garantiert dabei selbstverständlich jederzeit die Einhaltung der Komfortkriterien im Aufenthaltsbereich.

emcoair Weitwurfdüsen

Grundlagen und Systemvorteile

Drallluft-durchlässe

durchlässe

Schlitzluft-	

Typen WWD-S		Schlitzluft- durchlässe
Beschreibung	162	durchiasse
Abmessungen	163	
Schnellauswahl technische Leistungen, Volumenstrom		Rundrohrluft-
Typen WWD-L		durchlässe
Beschreibung		
Abmessungen	166	
Typen WWD-S/-L mit motorischer Verstellung	167	Quellluft- durchlässe
Typen WWD-S mit thermostatischer Verstellung		
Beschreibung, Abmessungen, Schnellauswahl techn. Leistungen, Volumenstrom	168	
Variantenschlüssel	169	Industrieluft- durchlässe

Weitwurf-düsen

Inhalt

emcoair Weitwurfdüse Typ WWD-S

Die Produkte der Serie WWD sind dreh- und schwenkbare Weitwurfdüsen mit hoher Induktion und verstellbarer Strahlrichtung.

Diese Luftdurchlässe sind ideal für die Montage in Reihe oder Batterie überall dort, wo hohe Luftmengen gefordert werden und wo außer einer guten Funktion auch eine ansprechende Ästhetik verlangt wird.

Technische Beschreibung

- Lieferbare Durchmesser von DN 40 bis 230 mm
- Konstruktion aus Aluminium natur oder lackiert weiß RAL 9010
- Einbauhöhe zwischen 2,8 und 30 m
- Volumenstrombereiche von 25 bis 3140 m³/h
- Mit separatem Stellmotor lieferbar
- Befestigung mit frontseitigen Schrauben direkt im Kanalanschluss
- Übergänge für Flexrohre, Rundkanal und Blendringe separat lieferbar
- Version Weitwurfdüse WWD mit Flexanschluss (RF) und Blendring (C) (Komplettlieferung, kann nicht separat bestellt werden)
- Übergänge für Flexrohr (RF) oder Rundkanal (RC)
- Blendring (C), Doppelscheiben-Mengeneinstellung (M0) und Dralleinsatz (D0)

Zubehör:

C = Blendring

TV = Thermostat-Federverstellung

RF = Übergang für Flex-Rohre

RC = Übergang für Rundkanäle

M0 = Mengeneinstellung

D0 = Dralleinsatz

Weitere Informationen: siehe Variantenschlüssel S. 169.

emcoair Weitwurfdüsen – Typ WWD-S

Blendring (C)

Ø5

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

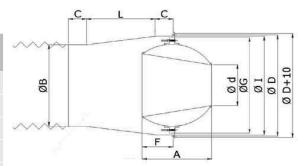
Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen Typ WWD-S

Abmessungen

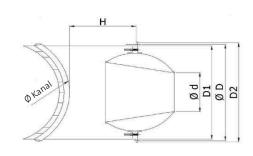

Größe DN	Ø1 [mm]	Ø 2 [mm]	Ø 3 [mm]	Ø 4 [mm]	Ø 5 [mm]	Anzahl Löcher	S [mm]	Ak [m²]
40	80	109	135	119	40	3	56	0,0013
50	102	132	166	148	50	3	78	0,0020
80	160	203	254	220	80	3	131	0,0050
110	200	246	285	266	110	3	144	0,0095
150	300	350	387	368	150	6	233	0,0177
200	400	448	485	472	200	6	308	0,0314
230	400	448	485	472	230	6	308	0,0415
235*	400	448	485	472	230	6	308	0,0415

^{*} Modell ohne Innenkegel

Maße emcoair WWD-S (Standardversion) und Übergang RF

(für Befestigung bei Flexrohren)

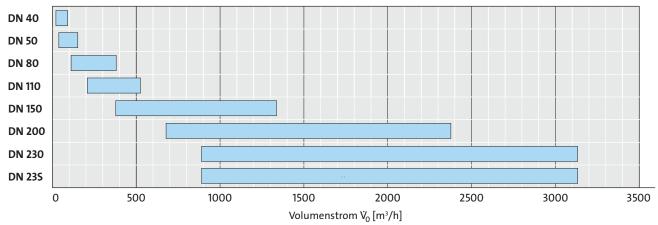
(rar bei	(Idi belestigang berriexionien)								
Größe DN	ØD [mm]	Ød [mm]	A [mm]	F [mm]	B [mm]	ØG [mm]	l [mm]	L [mm]	C [mm]
40	119	40	56	22	78	109	113	40	40
50	148	50	78	30	98	132	138	40	60
80	220	80	131	57	158	203	210	100	60
110	266	110	144	60	195	246	251	100	60
150	368	150	233	103	298	350	358	170	60
200	472	200	308	141	398	448	462	170	60
230	472	230	308	141	398	448	462	170	60



6 Löcher Ø 5 mm

Maße emcoair WWD-S (Standardversion) mit Übergang RC

(für Befestigung bei Rundrohren)


Größe DN	ØD [mm]	Ø d [mm]	Ø D1 [mm]	Ø D2 [mm]	H [mm]	Anzahl Löcher	Ø Löcher [mm]	Ø Kanal min-max [mm]
40	119	40	109	129	150	3	4,2	160-450
50	148	50	138	158	150	3	4,2	200-500
80	220	80	210	230	200	3	5	315-630
110	266	110	251	282	300	3	5	315-800
150	368	150	358	378	300	6	5	500-800
200	472	200	460	480	350	6	5	500-1000
230	472	230	460	480	350	6	5	500-1000

emcoair WWD-S – Schnellauswahl technische Leistungen (ohne Mengeneinstellung oder Dralleinsatz)

Größe DN	L _W [dB(A)]	$V_0[m^3/h]$	Δp [Pa]	Strahl T [m] Vt = 0,25m/s	Ak [m²]
DN 40	< 20-35	25-95	20-276	8,5-20,1	0,001257
DN 50	< 20-36	40-150	20-281	11,7-24,4	0,001963
DN 80	< 20-41	110-380	24-276	18,3-31,3	0,005027
DN 110	< 20-46	205-720	23-277	20,7-33,5	0,009503
DN 150	< 20-47	380-1335	23-275	22,3-34,4	0,017671
DN 200	< 20-49	680-2375	23-276	25,0-37,0	0,031416
DN 230	< 20-54	695-3140	23-275	28,2-41,1	0,041548
DN 235	30-67	895-3140	23-275	28,2-41,1	0,041548

emcoair WWD-S – Schnellauswahl Volumenstrom (ohne Mengeneinstellung oder Dralleinsatz)

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen Typ WWD-L

emcoair Weitwurfdüse Typ WWD-L mit verlängerter Düse (L)

Die Produkte der Ausführung WWD-L unterscheiden sich von der Standardversion WWD durch eine verlängerte Düse anstelle des Innenkegels.
Dadurch erhöht sich die Strahlkonzentration. Diese Lösung gestattet den Einbau des Umlenkblechs in dem Durchlass selbst und die Realisierung von Modellen mit einem höheren Ausgangsdurchmesser bei gleichen Außenabmessungen, was somit den regulierbaren Volumenstrom beachtlich steigert.

Technische Beschreibung

- Lieferbare Durchmesser von DN 80 bis 300 mm
- Konstruktion aus Aluminium natur oder lackiert weiß RAL 9010
- Einbauhöhe zwischen 2,8 und 30 m
- Volumenstrombereiche von 50 bis 3200 m³/h
- Mit separatem Stellmotor lieferbar
- Befestigung mit frontseitigen Schrauben direkt im Kanalanschluss
- Übergänge für Flexrohre, Rundkanal und Blendringe separat lieferbar
- Version Weitwurfdüse WWD mit Flexanschluss (RF) und Blendring (C) (Komplettlieferung, kann nicht separat bestellt werden)
- Anschlüsse für Flexrohr (RF) oder Rundkanal (RC)
- Blendring (C), Doppelscheiben-Mengeneinstellung (M0) und Dralleinsatz (D0)

Zubehör:

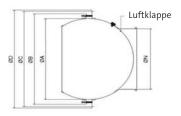
C = Blendring

TV = Thermostat-Federverstellung

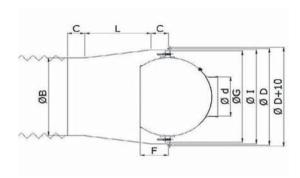
RF = Übergang für Flex-Rohre

RC = Übergang für Rundkanäle

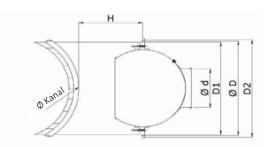
M0 = Mengeneinstellung


D0 = Dralleinsatz

Weitere Informationen: siehe Variantenschlüssel S. 169.


Abmessungen

Größe DN	Ø N [mm]	ØA [mm]	Ø B [mm]	Ø C [mm]	Ø D [mm]
80	80	160	203	220	254
110	100	200	246	266	285
150	150	300	350	368	387
200	200	400	448	472	485
230	230	400	448	472	485
250	250	400	448	472	485
300	300	400	448	472	485


Maße emcoair WWD-L mit verlängerter Düse (L) und Übergang RF (für Befestigung bei Flexrohren).

Größe DN	ØD [mm]	Ød [mm]	A [mm]	F [mm]	B [mm]	ØG [mm]	l [mm]	L [mm]	C [mm]
80	220	80	131	57	158	203	210	100	60
110	266	110	144	60	195	246	251	100	60
150	368	150	233	103	298	350	358	170	60
200	472	200	308	141	398	448	462	170	60
230*	472	230	308	141	398	448	462	170	60
250*	472	250	308	141	398	448	462	170	60
300*	472	300	308	141	398	448	462	170	60

Maße emcoair WWD-L mit verlängerter Düse (L) mit Übergang RC (für Befestigung bei Rundrohren)

(
Größe DN	ØD [mm]	Ø d [mm]	Ø D1 [mm]	Ø D2 [mm]	H [mm]	Anzahl Löcher	Ø Löcher [mm]	Ø Kanal min-max [mm]
80	220	80	210	230	200	3	5	315-630
110	266	110	251	282	300	3	5	315-800
150	368	150	358	378	300	6	5	500-800
200	472	200	460	480	350	6	5	500-1000
230*	472	230	460	480	350	6	5	500-1000
250*	472	250	460	480	350	6	5	500-1000
300*	472	300	460	480	350	6	5	500-1000

^{*} haben die gleichen Zubehörteile

^{*} haben die gleichen Zubehörteile

Drallluftdurchlässe

Deckenluftdurchlässe

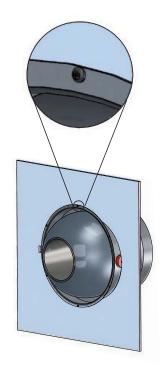
Schlitzluftdurchlässe

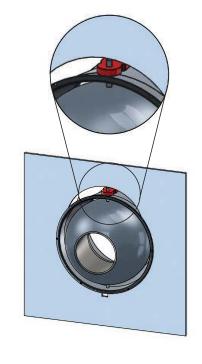
Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen Typ WWD

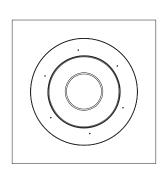

emcoair Weitwurfdüse Typ WWD-S/-L mit motorischer Verstellung

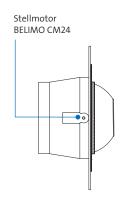

Die Weitwurfdüsen der Typen WWD-S und WWD-L sind mit motorischer Verstellung lieferbar.

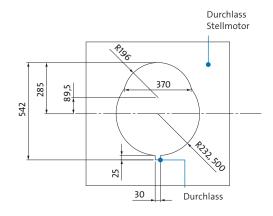
Hier kann die Einstellung der Düsen mit Hilfe einer stetig regelnden oder ON-/OFF-Stellmotors (24V oder 230V) vorgenommen werden.

Grundsätzlich sind Varianten mit innen oder außen liegenden Stellmotoren verfügbar.

Bei außen liegendem Motor wird eine spezielle Revisionsmöglichkeit notwendig, die mit Hilfe eines Flansches erzielt wird (siehe Illustrationen).





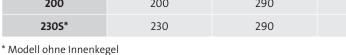

Stellmotore für Weitwurfdüse Typ WWD-S und WWD-L

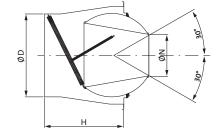
	AUF	/zu	stetig regelnd		
Größe DN	24 Volt	230 Volt	24 Volt	230 Volt	
80*	CM24-L	CM230-L	CM24A-SRL	_	
110*	NM24A	NM230A	NM24A-SR	NM230A-SR	
150	NM24A	NM230A	NM24A-SR	NM230A-SR	
200	NM24A	NM230A	NM24A-SR	NM230A-SR	
230	NM24A	NM230A	NM24A-SR	NM230A-SR	
250 (nur Typ L)	NM24A	NM230A	NM24A-SR	NM230A-SR	
300 (nur Typ L)	NM24A	NM230A	NM24A-SR	NM230A-SR	

^{*} bei diesen Größen Motor nur außen liegend lieferbar

emcoair Weitwurfdüse Typ WWD-S mit thermostatischer Verstellung

Die Weitwurfdüsen der Serie WWD sind mit thermostatischer Verstellung lieferbar. Hier kann die Einstellung der Düsen mit Hilfe einer Thermostatfeder mit Formerinnerung vorgenommen werden. Die Schräglage der Düsen erfolgt auf der Grundlage der eingespeisten Lufttemperatur. Dies ermöglicht die konstante Beibehaltung der optimalen Wurfbedingungen ganz ohne Strom und damit höchst ernergieeffizient.

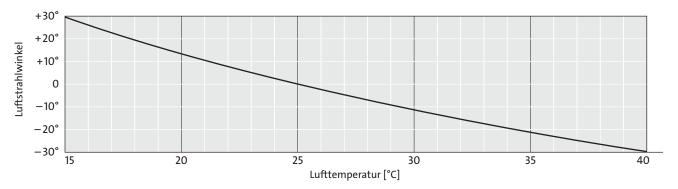

Technische Beschreibung (abweichend vom Typ WWD-S)

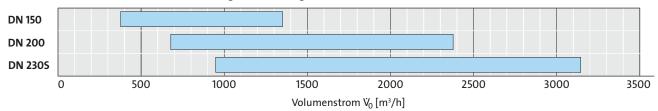

- Lieferbare Durchmesser von DN 150. 200 und 230 mm
- Automatische Einstellung der Neigung von -30° bis +30°
- Volumenstrombereiche von 380 bis 3140 m³/h

weitere Informationen siehe Typ- WWD-S und Variantenschlüssel

Abmessungen

Größe DN	ØN[mm]	H [mm]	Ø D [mm]
150	150	285	298
200	200	290	398
230S*	230	290	398




Schnellauswahl technische Leistungen (ohne Mengeneinstellung oder Dralleinsatz)

Größe DN	L _W [dB(A)]	\ddot{V}_0 [m ³ /h]	Δp [Pa]	Strahl T [m] Vt = 0,25m/s	Ak [m²]
DN 150	< 20-47	380 - 1335	23 - 275	22,3 - 34,4	0,017671
DN 200	< 20-49	680 - 2375	25 - 37	25 - 37	0,031416
DN 230S	30-67	895 - 3140	28,2 - 41,1	28,2 - 41,1	0,041548

Die lufttechnischen Daten sind identisch mit denen des Typs WWD-S und den Diagrammen zu entnehmen.

Schnellauswahl Volumenstrom (ohne Mengeneinstellung oder Dralleinsatz)

emcoair Weitwurfdüsen - Typ WWD

Grundlagen und Systemvorteile

Drallluftdurchlässe

Variantenschlüssel Stelle 1 = emcoair WWDS = Weitwurfdüse WWD-S Deckenluftdurchlässe WWDL = Weitwurfdüse WWD-L 2 - 5 040 = 40 mm Nenngröße DN (nur Typ WWD-S) 050 = 50 (nur Typ WWD-S)080 = 80 Schlitzluft-110 = 110 durchlässe 150 = 150 200 = 200230 = 23023S = 230 S (nur Typ WWD-S) Rundrohrluft-250 = 250 (nur Typ WWD-L) durchlässe 300 = 300 (nur Typ WWD-L) 6 - 8 00 = ohne Anbauteile M0 = mit Mengensatz D0 = mit Dralleinsatz Quellluftdurchlässe MD = mit Mengeneinstellung und Dralleinsatz 9 - 10 A000 = Aluminium unbehandelt 9010 = RAL-Ton 9010 glänzend ONCS = NCS-Ton Industrieluft-00DB = DB-Lack durchlässe RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton YYYY = Sonder XXXX = RAL-Classic nach Wahl 11 - 14 00 = Verstellung: ohne Übergang Typ WWD RF = mit Übergang auf Flexrohrkanal RC = mit Übergang auf Rundohrkanal 15 - 16 HZ = Handverstellung, zentral VO = vorgerüstet für einen Stellantrieb BG = elektrischer Antrieb Belimo CM24-L (für DN 80) BH = elektrischer Antrieb Belimo CM230-L (für DN 80) BF = elektrischer Antrieb Belimo CM24-SR-L (für DN 80) B6 = elektrischer Antrieb Belimo NM24A B8 = elektrischer Antrieb Belimo NM230A B9 = elektrischer Antrieb Belimo NM24A-SR B5 = elektrischer Antrieb Belimo NM230A-SR TV = thermostatische Verstellung (nur DN 150, 200, 230 S) 17 - 18 0 = ohne Stellantrieb A = außen (automatisch mit Revisionsklappe) 19 I = innen (nicht bei DN 80, 110) Unternehmenssparte Position Stellantrieb Nenngröße (mm) Verstellung Anbauteile Oberfläche Preise variantengenau Übergang im Typenkonfigurator unter Artikel

1 WWDS 040 00 A000 00 HZ 0 = Beispiel

www.emco-klima.com/WWD

Kombiluftdurchlässe.

Jedes Großprojekt in der modernen Gebäudetechnik unterscheidet sich von seinen Vorgängern und Nachfolgern. Dabei werden die Raumlasten in diesen Gebäuden über die verschiedensten Ansätze wie zentral, dezentral, wasserführend oder über Nur- Luftsysteme abgeführt. Die anspruchsvolle Außen- wie Innenarchitektur stellt dabei immer wieder eine große Herausforderung für den planenden Ingenieur dar.

Im Rahmen der vielen Planungen und ausgeführten Großprojekte hat emco Klima ein großes Maß an Erfahrungen und Lösungen erarbeitet, die nicht nur in bestehende Produkte eingeflossen sind, um sie effektiver in ihrer Funktion zu machen, sondern es sind auch vollkommen neue Produkte und Ansätze erfunden worden. Oft ist es sinnvoll, die Produkte in den Baukörper oder das Mobiliar zu integrieren. In anderen Fällen kann es sinnvoll sein, die Zu- und Abluftführung in einem Produkt zu kombinieren. In jedem Fall aber finden Sie bei emco Klima das für Ihren Fall benötigte System.

Sollten Sie in unserer Broschüre nicht fündig werden, bitten Sie unseren kompetenten Außendienst zu einem Besuch!

emcoair Kombiluftdurchlässe

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Inhalt

Variantenschlüssel	176
Тур KSW	
Beschreibung, Funktionsweise, Raumlufttechnische Daten	178
Montage	180
Abmessungen 1-schlitzige Varianten	181
Abmessungen 2-schlitzige Varianten	182
Variantenschlüssel	183

Typ KS

emcoair Kombischlitzdurchlass KS

Der emcoair KS ist ein verstellbarer Kombinationsschlitzdurchlass für den Wandeinbau. Die Luftdurchlässe (Zuund Abluft) sind kombiniert in einer Frontplatte nebeneinander angebracht. Schwenkbare Schalldämmkulissen sind im Anschlusskasten integriert. Durch die Frontseite des Anschlusskastens sind alle Komponenten einfach zugänglich. Der Anschluss erfolgt über den rückseitig angeordneten Anschlussstutzen. Dabei ist der Einsatz von Konstantvolumenstromreglern im Anschlussstutzen optional. Verschiedene Abmessungen und Ausführungen sind erhältlich.

Einsatzbereiche

- In Komfortbereichen mit mittleren Raumhöhen im Heiz- und Kühlfall
- Bei variablen Luftvolumenstromsystemen
- In Büroräumen, Konferenzräumen, Hotelzimmern etc.

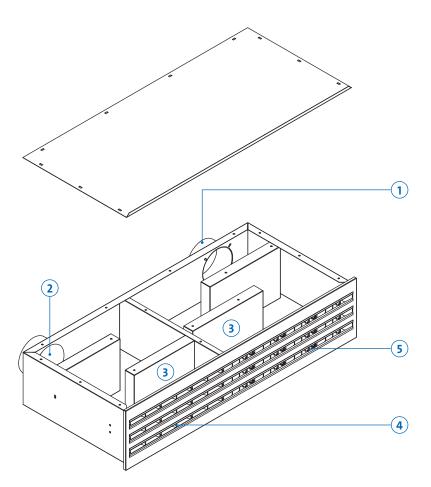
Produktvorteile

- Geringer Druckverlust
- Geringe Schallleistungspegel
- Schneller Temperatur- und Geschwindigkeitsabbau entlang der Strahlachse
- Gute Strahlstabilität im Heiz- und Kühlfall
- Sehr gut geeignet für eine variable Raumaufteilung, da keine Montage in der Zwischendecke erfolgt
- Einfache, nachträgliche Verstellung des Sollluftvolumenstromes der Zuluft möglich
- Hohe Durchgangsdämpfung

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe


Raumlufttechnische Daten KS

Nenngröße [-]	L _{WA} [dB(A)]	Ÿ₀ [m³/h]	Δp [Pa]	x _{krit} [m]
DN 550/3	30	70	18	2,7
	35	90	28	3,2
	40	110	42	3,8
DN 750/3	30	85	20	2,2
	35	105	30	2,7
	40	130	45	3,5
DN 950/3	30	110	20	2,7
	35	140	32	3,4
	40	160	42	3,9
DN 1150/3	30	120	21	2,4
	35	150	33	3,0
	40	180	47	3,7

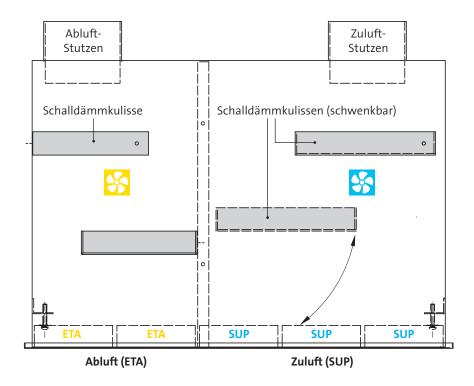
Festlegung: Ohne BVR. Werte gelten für Kombination Zu-/Abluft. Kritischer Strahlweg für ΔT = 4 K

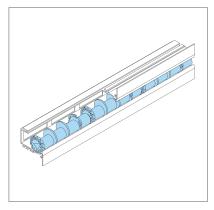
Quellluftdurchlässe

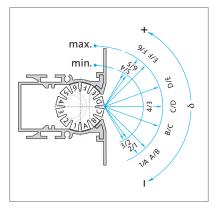
Rundrohrluftdurchlässe

Konstruktiver Aufbau

Der KS besteht aus einem Anschlusskasten aus verzinktem Stahlblech. Die Schalldämmkulissen sind entsprechend der VDI 6022 ausgeführt. Das Frontblech selbst ist als Multistrahlfrontblech mit integrierten SAL-Luftlenkelementen ausgeführt und kann in seiner Farbgebung (RALoder NCS-Töne) angepasst werden. Die Luftleitelemente bestehen aus schwarzem Kunststoff (ABS), sind auf Wunsch aber auch in Weiß erhältlich. Die Frontblende ist über eine Schraubbefestigung demontierbar. Schwenkbare Schalldämmkulissen erlauben einen schnellen, einfachen Zugang zum angeschlossenen Kanalsystem.


Legende:


- 1. Zuluftstutzen
- 2. Abluftstutzen
- 3. Schalldämmkulissen
- 4. Abluftwalzen
- 5. Zuluftwalzen


Industrieluftdurchlässe

Weitwurfdüsen

Kombiluft durchlässe Typ KS

Funktionsweise

Die Zuluft wird über die Luftlenkwalzen in den Raum eingeblasen und entsprechend der Walzenstellung stabil tangential entlang der Raumdecke geführt oder aufgefächert und quellluftartig in den Raum geführt. Die Abluftführung erfolgt über Düsenwalzen in der Frontplatte entweder mit angeschlossenem Kanalsystem oder durch Überströmung bei zentraler Abluft im Flurbereich.

Die internen Schalldämmkulissen, mindern die Übertragung von Anlagengeräuschen in den Raum sowie die Telefonieschallübertragung durch das Kanalsystem. Die Kulissen sind schwenkbar ausgeführt, um Wartung und Reinigung des Anschlusskastens und des angeschlossenen Kanalsystems zu erleichtern.

Die leichte Zugänglichkeit des Anschlussstutzens ermöglicht den optionalen Einsatz und Wechsel von Konstantvolumenstrombegrenzern zum Abgleich des Kanalsystems und zur Begrenzung der eingebrachten Zuluftmenge.

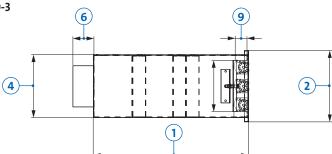
Drallluftdurchlässe

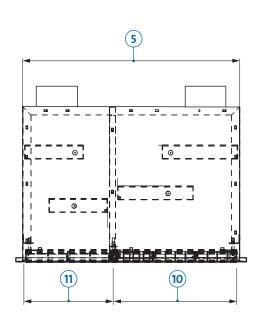
Deckenluftdurchlässe

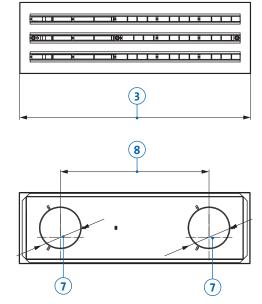
Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe


Industrieluftdurchlässe


Weitwurfdüsen


Kombiluftdurchlässe Typ KS

Abmessungen emcoair Typen KS550-3 / KS750-3 / KS950-3 / KS1150-3

Für alle Maßangaben gilt: Überstehende Befestigungsteile, wie z.B. Knotenbleche, Linsenkopfschrauben etc., sind maßlich nicht berücksichtigt!

KS – Abmessungen 3-schlitzige Varianten

Nr.	Maß Typ	550-3	750-3	950-3	1150-3	Einheit
1	Tiefe, gesamt	370	370	370	370	mm
2	Höhe, Frontblende	170	170	170	170	mm
3	Breite der Frontblende, gesamt	550	750	950	1150	mm
4	Höhe Anschlusskasten, gesamt	150	150	150	150	mm
5	Breite Anschlusskasten	517	717	917	1117	mm
6	Länge Zuluftstutzen / Abluftstutzen	50	50	50	50	mm
7	Durchmesser Zuluftstutzen / Abluftstutzen	98	98	123	123	mm
8	Abstand Mitte Zuluftstutzen / Mitte Abluftstutzen	354	554	754	954	mm
9	Tiefe Schlitzluftdurchlass (ca.)	28	28	28	28	mm
10	aktive Schlitzlänge Zuluft	900	1200	1500	1800	mm
11	aktive Schlitzlänge Abluft	600	900	1200	1500	mm

Variantenschlüssel für Typ KS	Stelle
1 = emcoair	1
OKS = Kombischlitzdurchlass Typ KS	2 - 4
O3 = 3 Schlitzreihen	5 - 6
K = Zuluft-/Abluftkombination	
Z = Zuluft	
A = Abluft	7
0550 = 550 mm Länge	
0750 = 750 mm	
0950 = 950 mm	
1150 = 1150 mm	
XXXX = Angabe der Länge in mm (min. 550 mm/max. 1150 mm)	8 - 11
9010 = Durchlass RAL-Ton 9010 glänzend	
ONCS = NCS-Ton	
00DB = DB-Lack	
RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton	
YYYY = Sonder	
XXXX = RAL-Classic nach Wahl	12 - 15
S = Halbschale schwarz, Walze schwarz	12 13
3 = Halbschale schwarz, Walze grau	
4 = Halbschale weiß, Walze schwarz	
W = Halbschale weiß, Walze weiß	
Y = Sonder	16
C = alle D/E	
S = Standard	
Y = Sondereinstellung	17
0 = ohne Drossel	
3 = mit BVR	
1 = mit Drossel	
A = mit BVR 50m³/h	
B = mit BVR 55m³/h	
$C = mit BVR 60m^3/h$	
D = mit BVR 70m³/h	
$F = mit BVR 75m^3/h$	
$G = mit BVR 80m^3/h$ $H = mit BVR 90m^3/h$	
I = mit BVR 100m³/h	
J = mit BVR 110m³/h	
K = mit BVR 120m³/h	
L = mit BVR 130m³/h	
$M = mit BVR 140m^3/h$	
$N = mit BVR 150m^3/h$	
O = mit BVR 160m³/h	
$P = mit BVR 190m^3/h$	18
4 = Schalldämmkulisse Baustoffklasse B1	
5 = Schalldämmkulisse Baustoffklasse A2	19

emcoair Kombiluftdurchlässe – Typ KS

Grundlagen und Systemvorteile

Drallluftdurchlässe

2 = 2 20 098 = 98 mm Stutzendurchmesser Deckenluftdurchlässe 123 = 123 mm Stutzendurchmesser XXX = Angabe der Stutzendurchmesser in mm 21 - 23 0 = ohne Lippendichtung 1 = mit Lippendichtung 24 Schlitzluftdurchlässe 0 = Anschlusskasten und Frontblech montiert = nur Frontblech 25 0 = BVR entfällt 1 = nur Zuluft Rundrohrluft-2 = nur Abluft durchlässe 3 = Zu- und Abluft Quellluftdurchlässe ■ | Produktgruppe (1 = emcoair) Anzahl Stutzen in Stück Farbe Luftlenkelement Anzahl Schlitzreihen Stutzendruchmesser Luftlenkeinstellung Lippendichtung Liefermodus Variante BVR Industrieluft-Ausrüstung Länge (mm) durchlässe Oberfläche Preise variantengenau im Typenkonfigurator unter www.emco-klima.com/KS 0550 9010 S C 0 4 Weitwurfdüsen

emcoair Kombinationsdurchlass KSW

Der emcoair KSW ist ein verstellbarer Kombinationsdurchlass (Zu-/Abluft) für den Einbau in leichten Wänden (S=100 mm, z. B. Trockenbau). Ausgestattet mit im Anschlusskasten integrierter Telefonieschalldämpfung und Traversenbefestigung kann der KSW zum Einbau zwischen bauseitigen Ständerwerken in variablen Längen geliefert werden. Der Anschluss erfolgt über die rückseitig angeordneten Anschlussstutzen.

Durch die werkseitige Einbausituation des Trennbleches sind verschiedene Zuluft-/Abluft-Verhältnisse realisierbar.

Material

Die Frontblende aus Aluminiumstrangpressprofilen (Standardoberfläche naturfarbig eloxiert, auf Wunsch nach RAL oder NCS lackiert) ist mittels Schraubbefestigung jederzeit demontierbar. Der Anschlusskasten besteht aus verzinktem Stahlblech mit einer inneren akustischen Auskleidung (gemäß VDI 6022).

Funktionsweise

Über den Luftanschluss der rückseitigen Stutzen werden Zuluft und Abluft entlang des Schalldämpferelementes (nach VDI 6022) geführt. Die Lufteinbringung des Schlitzdurchlasses erfolgt über Exzenterwalzen als Luftlenkelemente. Die Exzenterwalze bildet mit dem Schlitzprofil einen Strömungskanal, der die Luft auf Kreisbahnen führt. Bei großen Strömungsgeschwindigkeiten bildet sich in der Nähe der Walzenkörperoberfläche ein hoher Unterdruck. So wird eine stabile Strömung und Strahllenkung erreicht.

Durch die Walzenstellung ist die Strömungsrichtung der Luft in einem Bereich von 180° stufenlos einstellbar. Für jede Strahlrichtung sind zwei Walzenstellungen möglich: "reduziert" (min) und "nicht reduziert" (max).

Zugleich findet im Austrittsbereich des Schlitzes eine hohe Induktion statt, so dass mit der ausströmenden Luft eine große Menge Raumluft mitgerissen wird. Dies führt zu einem schnellen Temperatur- und Geschwindigkeitsabbau.

Die einzeln verstellbaren Walzen haben eine Länge von 100 mm. In der werkseitigen Standardeinstellung sind aufeinander folgende Walzen im Wechsel auf D/E eingestellt (45° in Richtung Decke).

emcoair Kombiluftdurchlässe – Typ KSW

max.

min.

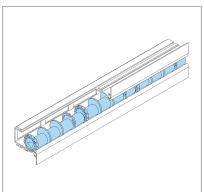
Grundlagen und Systemvorteile

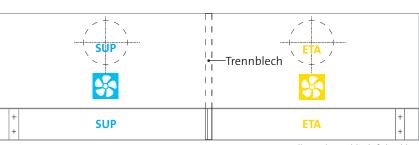
Drallluftdurchlässe

Deckenluft-

durchlässe

A O C/D


> Schlitzluftdurchlässe


Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Darstellung ohne Schlitzluftdurchlass

Raumlufttechnische Daten KSW

Legende Luftwege / Luftarten

Abluft

Nenngröße [-]	L _{WA} [dB(A)]	Ÿ₀ [m³/h]	Δp [Pa]	x _{krit} [m]					
500/1	30	60	27	4,8					
	35	75	41	6,4					
	40	95	66	8,7					
800/1	30	45	18	4,4					
	35	60	33	6,4					
	40	75	51	8,5					
1000/1	30	55	15	4,3					
	35	65	21	5,3					
	40	85	36	7,5					
1200/1	30	60	15	3,8					
	35	75	24	5,0					
	40	90	34	6,4					
500/2	30	90	24	3,9					
	35	110	36	4,9					
	40	130	50	5,8					
800/2	30	65	24	3,5					
	35	80	36	4,4					
	40	100	56	5,6					
1000/2	30	80	18	3,5					
	35	100	29	4,4					
	40	120	41	5,3					
1200/2	30	90	21	3,2					
	35	110	31	4,0					
	40	130	43	4,8					

Festlegung: gilt für gleiche Luftvolumenströme bei Zu- und Abluft Werte gelten für Kombination Zu-/Abluft Kritischer Strahlweg für ΔT= 4 K

Montage

Bei der Montage des emcoair KSW ist wie folgt vorzugehen:

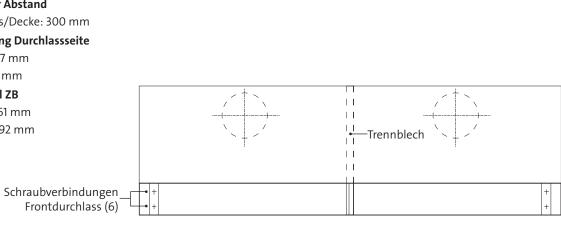
- Aufbau des Ständerwerkes
- Montage der stutzenseitigen Trockenbauplatten (inkl. Ausschnitt für die Stutzen)
- Ausrichtung und Fixierung des Anschlusskastens an die Trockenbauplatten (z. B. durch bauseitige Winkel oder Fixierung am Ständerwerk)
- Empfohlener Abstand des Frontdurchlasses zur Decke: 300 mm
- Montage der Trockenbauplatten auf der Durchlassseite
- Befestigung des Frontdurchlasses durch die Schraubverbindungen links und rechts (siehe Zeichnung unten)

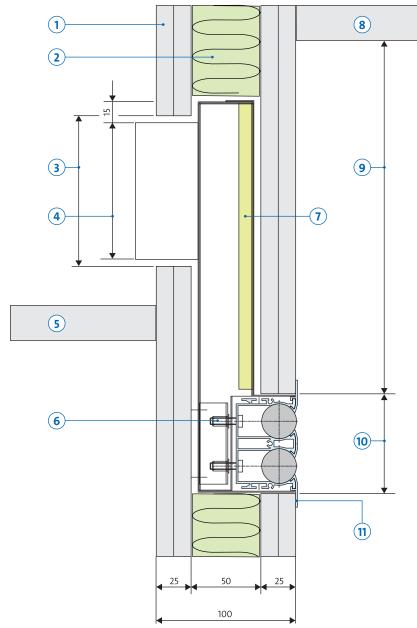
Legende:

- 1. Leichte Trennbauwand
- 2. Isolierung
- 3. Einbauöffnung Stutzenseite

Typ 500: \emptyset = 85 mm Typ 800: \emptyset = 85 mm Typ 1000: \emptyset = 105 mm Typ 1200: \emptyset = 105 mm

- 4. Ø Luftanschlussstutzen
- 5. Zwischendecke Flur
- 6. Schraubverbindung Luftdurchlass
- 7. Schallabsorptionsmaterial
- 8. Decke
- 9. Empfohlener Abstand


Luftdurchlass/Decke: 300 mm


10. Einbauöffnung Durchlassseite

2 Schlitze = 77 mm 1 Schlitz = 45 mm

11. Auflageprofil ZB

1-schlitzig = 61 mm 2-schlitzig = 92 mm

(4)

3

Grundlagen und Systemvorteile

Drallluft-

Deckenluft-

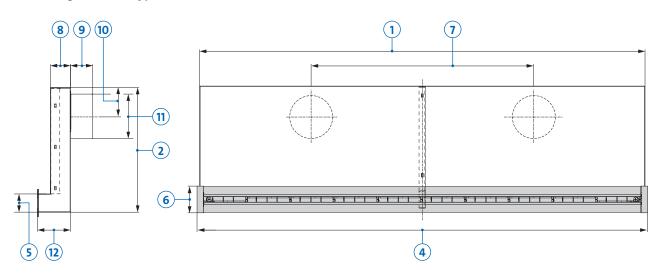
durchlässe

durchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

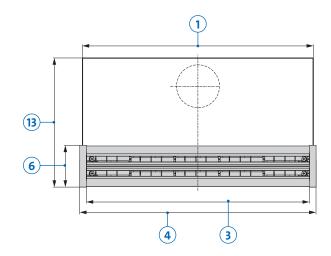

Industrieluftdurchlässe

Weitwurfdüsen

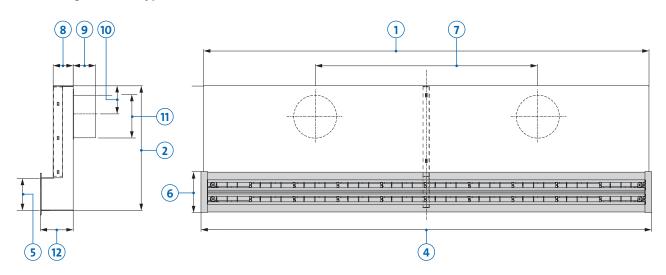
Abmessungen emcoair Typ KSW500-1 (kein Kombi)

Für alle Maßangaben gilt: Überstehende Befestigungsteile, wie z.B. Knotenbleche, Linsenkopfschrauben etc., sind maßlich nicht berücksichtigt!

Abmessungen emcoair Typen KSW800-1 / KSW1000-1 / KSW1200-1


(13)

KSW – Abmessungen 1-schlitzige Varianten


Nr.	Маß Тур	500-1	800-1	1000-1	1200-1	Einheit
1	Breite Anschlusskasten, gesamt	518	818	1018	1218	mm
2	Höhe Anschlusskasten, gesamt	280	280	280	280	mm
3	Breite Schlitzluftdurchlass ohne Endwinkel	500	800	1000	1200	mm
4	Breite Schlitzluftdurchlass mit 2 Endwinkeln	530	830	1030	1230	mm
5	Höhe Schlitzluftdurchlass (ohne Auflageprofil)	41	41	41	41	mm
6	Höhe Schlitzluftdurchlass gesamt	61	61	61	61	mm
7	Abstand Zuluftstutzen/Abluftstutzen	-	408	508	608	mm
8	Tiefe Anschlusskasten	45	45	45	45	mm
9	Länge Anschlussstutzen	50	50	50	50	mm
10	Abstand Anschlusskastenoberseite / Stutzenmitte	53	53	63	63	mm
11	Durchmesser Zuluftstutzen / Abluftstutzen	78	78	98	98	mm
12	Tiefe gesamt	74	74	74	74	mm
13	Höhe Durchlass, gesamt	290	290	290	290	mm

Abmessungen emcoair Typ KSW500-2 (kein Kombi)

Für alle Maßangaben gilt: Überstehende Befestigungsteile, wie z.B. Knotenbleche, Linsenkopfschrauben etc., sind maßlich nicht berücksichtigt!

Abmessungen emcoair Typen KSW800-2 / KSW1000-2 / KSW1200-2

KSW – Abmessungen 2-schlitzige Varianten

Nr.	Maß Ty	р 500-2	800-2	1000-2	1200-2	Einheit
1	Breite Anschlusskasten, gesamt	518	818	1018	1218	mm
2	Höhe Anschlusskasten, gesamt	280	280	280	280	mm
3	Breite Schlitzluftdurchlass ohne Endwinkel	500	800	1000	1200	mm
4	Breite Schlitzluftdurchlass mit 2 Endwinkeln	530	830	1030	1230	mm
5	Höhe Schlitzluftdurchlass (ohne Auflageprofil)	73	73	73	73	mm
6	Höhe Schlitzluftdurchlass gesamt	94	94	94	94	mm
7	Abstand Zuluftstutzen/Abluftstutzen	-	408	508	608	mm
8	Tiefe Anschlusskasten	45	45	45	45	mm
9	Länge Anschlussstutzen	50	50	50	50	mm
10	Abstand Anschlusskastenoberseite/Stutzenmitte	63	63	63	63	mm
11	Durchmesser Zuluftstutzen / Abluftstutzen	98	98	98	98	mm
12	Tiefe gesamt	74	74	74	74	mm
13	Höhe Durchlass, gesamt	290	290	290	290	mm

emcoair Kombiluftdurchlässe – Typ KSW

Grundlagen

und System-Variantenschlüssel für Typ KSW Stelle vorteile 1 = emcoair 2 - 4 KSW = Kombinationsdurchlass Typ KSW 01 = 1 Schlitzreihe Drallluftdurchlässe 02 = 2 Schlitzreihen 5 - 6 K = Zuluft-/Abluftkombination (nicht bei 500 mm Länge möglich) Z = Zuluft (nur bei 500 mm Länge anzugeben) A = Abluft (nur bei 500 mm Länge anzugeben) Deckenluftdurchlässe 0500 = 500 mm Länge $0600 = 600 \, \text{mm}$ 0700 = 700 mm $0800 = 800 \, \text{mm}$ Schlitzluft-1000 = 1000 mm durchlässe 1200 = 1200 mm XXXX = Angabe der Länge in mm (min. 500 mm / max. 1200 mm) 8 - 11 E6C0 = Durchlass naturfarbig eloxiert Rundrohrluft-9010 = RAL-Ton 9010 glänzend durchlässe ONCS = NCS-Ton00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton Quellluftdurchlässe YYYY = Sonder SELO = schwarz eloxiert XXXX = RAL-Classic nach Wahl 12 - 15 S = schwarz (Farbe des Luftlenkelementes) Industrieluft-W = weißdurchlässe G = grau A = schwarz (UL94-V0 B = weiß (UL94-V0)Weitwurf-Y = Sonderfarbe düsen C = alle D/E Y = Sondereinstellung 17 0 = ohne Drossel 1 = mit frontseitig bedienbarer Drossel 18 4 = Schalldämmkulisse Baustoffklasse B1 5 = Schalldämmkulisse Baustoffklasse A2 19 1 = 1 Stutzen 2 = 2 Stutzen X = Angabe der Stutzenanzahl in Stück 20 098 = 98 mm Stutzendurchmesser XXX = Angabe der Stutzendurchmesser in mm 21 - 23 0 = ohne Dichtlippen 1 = mit Dichtlippen 24 0 = Anschlusskasten und Frontblech montiert F = nur Frontblech 25 Anzahl Stutzen in Stück Farbe Luftlenkelement Anzahl Schlitzreihen Stutzendruchmesser Luftlenkeinstellung Lippendichtung Liefermodus Produktgruppe Ausrüstung Länge (mm) Oberfläche Preise variantengenau im Typenkonfigurator unter Artikel www.emco-klima.com/KSW 0500 E6C0 S C 0 4 1 098 0 0 = Beispiel

Bodenluftdurchlässe.

Aus der modernen Gebäudetechnik sind EDV und Telekommunikation nicht mehr wegzudenken. Der Wunsch nach größtmöglicher Flexibilität und maximaler Raumausnutzung legt daher eine Installation aller Gewerke in modernen Doppelbodenkonstruktionen nahe.

emcoair Bodenluftdurchlässe kommen diesem Wunsch nach und ermöglichen entweder in Verbindung mit einem Druckboden oder mit einer jeweiligen Rohrverbindung die Einbringung der Frisch-, Warm- oder Kaltluft. Verschiedenste Techniken innerhalb der Produkte sorgen dabei für einen raschen Abbau von Strömungsgeschwindigkeiten und Temperaturdifferenzen bis auf Komfortniveau.

Neben den modernen Bürobereichen werden Bodenluftdurchlässe auch in großen Theatern, Kinos oder Veranstaltungssälen eingesetzt. Dabei kann die Frischluft gezielt an die Personen herangeführt werden. Dies ermöglicht neben hoher Luftqualität im Aufenthaltsbereich vollkommene Freiheit im Deckenbereich für technisches Gerät und geringsten Energieverbrauch.

emcoair Bodenluftdurchlässe

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

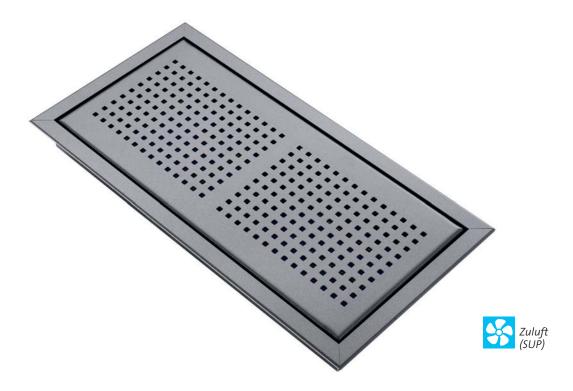
Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe


Bodenluftdurchlässe

Inhalt

Typ LBQ

Beschreibung, Montage, Material und Funktionsweise	186
Raumlufttechnische Daten – Schnellauswahl und Aufbau	188
Abmessungen	189
Schallleistungspegel und Druckverluste	190
Belastungswerte	191
Variantenschlüssel	192

emcoair Bodenquellluftdurchlass LBQ

Der emcoair LBQ ist ein linearer Quellluftdurchlass (Zu-/Abluft) für den Einbau in Fußböden und Doppelböden. Er besteht aus einer perforierten Bodenplatte in verstärkter Ausführung mit umlaufendem Blendrahmen und einem Anschlusskasten mit seitlichem Luftanschluss. Die Oberfläche der Bodenplatte kann auf Wunsch nach RAL oder NCS pulverbeschichtet, in Perl-RAL-Lackierung oder anderen Sonderbeschichtungen ausgeführt werden.

emcoair Bodenluftdurchlässe - Typ LBQ

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

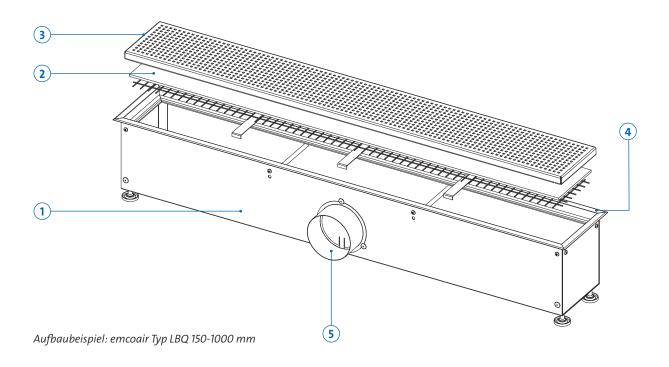
Bodenluft durchlässe Typ LBQ

Montage

Bei der Montage des emcoair LBQ ist wie folgt vorzugehen:

- Einschrauben der Ständerfüße.
- Einpassung in den Doppelboden
- Ausrichtung des Anschlusskastens an den Bodenbelag (z. B. durch Justage der Ständerfüße)
- Luftanschluss-Montage an Zuluft-Stutzen
- Einlegen der perforierten Bodenplatte

Legende:


- 1. Ständerfuß mit Höhenjustierung
- 2. Anschlusskasten
- 3. Luftanschlussstutzen
- 4. perforierte Bodenplatte
- **5.** umlaufender Blendrahmen
- 6. Luftanschluss Zuluft
- 7. Rohbetondecke
- 8. Hohlraum(-Doppel-)boden
- 9. Bodenbelag
- 10. Isolierung bauseits
- 11. Unterfütterung bauseits

Material

Das Gehäuse und die Bodenplatte bestehen aus sendzimir verzinktem Stahlblech, der Blendrahmen aus Aluminium. Der Anschlusskasten besteht aus beschichtetem Stahlblech (RAL 9005, schwarz), Luftanschlussstutzen und optional mit Lippendichtung und / oder Wärmedämmung außen.

Funktionsweise

Über den Luftanschluss der seitlichen Stutzen wird die Luft in den Anschlusskasten geführt. Durch das integrierte Gleichrichterelement und die perforierte Frontplatte tritt die Luft impulsarm in den Raum ein.

Raumlufttechnische Daten LBQ – Schnellauswahl

Тур	Länge [mm]	L _{wa} [dB(A)]	$\dot{V}[m^3/h]$	Δр [Ра]
LBQ 100	500*	25 30 35	60 90 105	21 39 55
LBQ 100	1000*	25 30 35	80 105 130	13 21 32
LBQ 100	1500*	25 30 35	150 190 240	15 24 38
LBQ 100	2000*	25 30 35	160 205 250	12 16 25
LBQ 150	500*	25 30 35	72 90 110	13 21 32
LBQ 150	1000*	25 30 35	90 110 135	12 19 29
LBQ 150	1500*	25 30 35	165 205 250	12 19 29
LBQ 150	2000*	25 30 35	140 190 240	10 18 27

^{*}Zwischenlängen in 100er Schritten lieferbar.

Aufbau

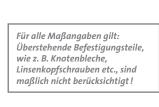
- 1 Gehäuse aus beschichtetem Stahlblech (RAL 9005)
- 2 Luftverteilmechanismus mit Vlies
- 3 Perforierte Bodenplatte aus sendzimir verzinktem Stahlblech
- 4 Blendrahmen (Aluminium)
- 5 Lochblechdrossel mit Lufteintrittsstutzen

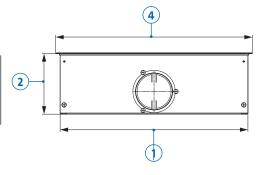
(3)

Grundlagen und Systemvorteile

Drallluft-

durchlässe


Deckenluft-


durchlässe

Schlitzluftdurchlässe

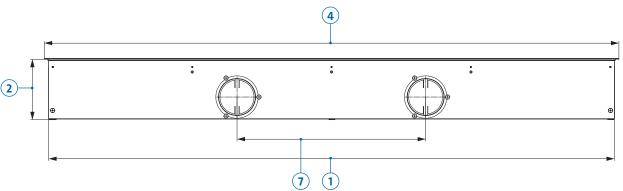
Rundrohrluftdurchlässe

Abmessungen emcoair Typ LBQ 100 / 150 (1 Stutzen)

emcoair Typ LBQ 100 / 150 - Abmessungen 1-stutzige Varianten

Nr.	Maß	Гур	100-500	150-500	100-1000	150-1000	Einheit
1	Länge Anschlusskasten, gesamt		500	500	1000	1000	mm
2	Höhe Anschlusskasten, gesamt		160	160	160	160	mm
3	Breite Anschlusskasten, gesamt		100	100	100	150	mm
4	Sichtbare Länge		520	520	1020	1020	mm
5	Sichtbare Breite		120	170	120	170	mm
6	Durchmesser Zuluftstutzen / Abluftstutzen		98	98	98	98	mm

Quellluftdurchlässe


Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Typ LBQ

Abmessungen emcoair Typ LBQ 100 / 150 (2 Stutzen)

emcoair Typ LBQ 100/150 - Abmessungen 2-stutzige Varianten

Nr.	Maß	Тур	100-1500	150-1500	100-2000	150-2000	Einheit
1	Länge Anschlusskasten, gesamt		1500	1500	2000	1000	mm
2	Höhe Anschlusskasten, gesamt (ohne Höhenjustierung)		160	160	160	160	mm
3	Breite Anschlusskasten, gesamt		100	150	100	150	mm
4	Sichtbare Länge		1520	1520	2020	2020	mm
5	Sichtbare Breite		120	170	120	170	mm
6	Durchmesser Zuluftstutzen / Abluftstutzen		98	98	98	98	mm
7	Abstand Anschlussstutzen		498	498	666	666	mm

emcoair Typen LBQ – Schallleistungspegel und Druckverlust in Abhängigkeit des Luftvolumenstroms

Nenngröße Breite/Länge [mm]	Stutzen	L _{wA} [dB(A)]	ਂ _ο [m³/hm]	Δp [Pa]
100/500	1	30 35 40	80 100 130	30 49 88
100/1000	1	30 35 40	100 130 160	19 32 47
100/1500	2	30 35 40	190 240 290	23 39 60
100/2000	2	30 35 40	190 230 290	18 25 38
150/500	1	30 35 40	90 110 140	21 32 52
150/1000	1	30 35 40	110 130 170	19 27 46
150/1500	2	30 35 40	210 250 300	20 29 42
150/2000	2	30 35 40	200 250 300	16 26 41

bleibender Verformungen der

Frontplatte sollte eine Durchbiegung

von f=3,0 mm nicht überschritten

werden (siehe rote Tabellenwerte).

Grundlagen und Systemvorteile

Drallluft-

durchlässe

durchlässe

Schlitzluft-

durchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Deckenluft-

Polactungetabollo

Belastungstabelle												
Belast	tung	Durchbiegung f über Belastung F										
Druck- kraft	Gewicht		LBQ B = 100 mm			LBQ B = 150 mm						
F	m	Stempel 1	Stempel 2	Stempel 3	Stempel 1	Stempel 2	Stempel 3					
N	kg	Punktbelastung D = 20 mm	Flächenbelastung 55 x 55 mm	Flächenbelastung Schuh	Punktbelastung D = 20 mm	Flächenbelastung 55 x 55 mm	Flächenbelastung 200 x 40 Schuh					
200	20	0,7	0,5	0,4	1,0	0,7	0,5					
400	41	1,1	0,8	0,7	1,5	1,1	0,9					
600	61	1,5	1,0	0,9	2,0	1,5	1,2					
800	82	1,8	1,2	1,1	2,5	1,8	1,5					
1000	102	2,1	1,4	1,3	2,9	2,2	1,8					
1200	122	2,4	1,6	1,5	3,3	2,5	2,1					
1400	143	2,7	1,8	1,6	3,6	2,8	2,3					
1600	163	3,0	2,0	1,8	4,0	3,1	2,6					
1800	183	3,2	2,1	1,9	4,3	3,3	2,8					
2000	204	3,5	2,3	2,0	4,6	3,6	3,1					

unten stehende Tabelle zeigt die zu

erwartende Durchbiegung der Front-

platte in Abhängigkeit der wirkenden

Flächenbelastung. Zur Vermeidung

Anmerkung: Werte für LBQ 600 x 600 mm auf Anfrage.

emcoair Typen LBQ 100 und 150 mm breit – Belastungswerte

Die maximal empfohlene Belastung

der Frontplatte ist abhängig von der

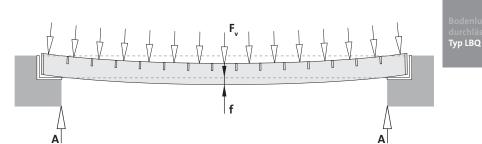
aufgrund der belasteten Fläche. Die

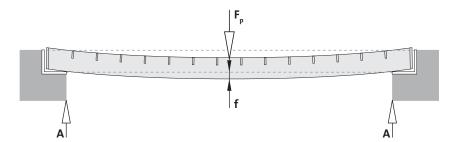
einwirkenden Kraft und der Verteilung

Kombiluftdurchlässe

Weitwurfdüsen

Belastungsarten


Flächenlast:


F, entspricht der gleichmäßig verteilten Last pro m² mit der daraus resultierenden Durchbiegung f.

Punktlast:

F_n entspricht der Punktlast auf einer Lauffläche von 200 x 200 mm mit der hieraus resultierenden Durchbiegung

f2 entspricht dem Durchbiegungswert in mm bei einer Last von 1,5 kN auf 200 x 200 mm.

Va	riant	enschl	üssel													Stelle
1	= em	coair														1
	LBQ	= Bode	enquell	luft	dur	chlass	LBQ									2 - 4
		0100	= 100 i	nm	Bre	eite										
		0150	= 150													5 - 8
			0500	= 5	00	mm Lä	nge									
			1000	= 1	000) mm										
			2000	= 2	2000	0 mm										9 - 12
				Z	= V	Vinkelr	ahm	ien	aus	Z-F	Prof	ilen				
				L	= V	Vinkelr	ahm	ien	aus	L-P	rofi	len				13
					٧	= Wer	ksto	ff Lı	uftd	urc	hlas	ss: S	tak	ıl, verzinkt		14
						7012	= D	urc	hla	s R	AL-1	lon '	701	2 glänzend		
						ONCS	= N	CS-	Ton							
						00DB	= D	B-L	ack							
						RALP	= R	AL-F	PEA	RL-1	Ton					
						RALG	= R	AL-(Clas	sic-	Ton					
						YYYY										
						0000										
						XXXX		AL-Classic nach Wahl								15 - 18
												ussk				
							ST							sten		19 - 20
												off A	ns	chlusskasten: Stahl, verzinkt		
								0		ntfä						21
														utzen in Stück bis Länge 1000 mm)		
														tutzen in Stück ab Länge 1000 mm)		
											_		der	Stutzenanzahl in Stück		2.2
									E		ntfä					22
										-		hne				
											= n		ш			22
										E		ntfä		Descri		23
														• Drossel Drossel		
												= m				24
														nit Höhenverstellung		24
														hne Höhenverstellung		
														ntfällt		25
												-		= Anordnung in Einzelposition		23
														= Anordnung am Bandanfang		
														= Anordnung in der Bandmitte		
														= Anordnung am Bandende		26
													i	,		
								ten								
e					lass			kas	ück							
part					rch			luss	n St			00				
nss				_	ftdu			sch	en i	ng		llun				
ıme		Œ	Œ	rof	₹Lu	he	S	ŦAn	utz	chtu		rste	п		Preise variantengenau	
rne	<u></u>	m) =	ш) s	nen	stof	fläc	ılus	stof	h St	ndic	<u>-</u>	nve	hur		im Typenkonfigurator unter	web
Unternehmenssparte	Artikel	Breite (mm)	Länge (mm)	Rahmenprofil	Werkstoff Luftdurchlass	Oberfläche	Anschluss	Werkstoff Anschlusskasten	Anzahl Stutzen in Stück	Lippendichtung	Drossel	Höhenverstellung	Anordnung		www.emco-klima.com/LBQ100	
1			_		_		_		_					- Paianial		
1	LBQ	0100	0500	Z	٧	7012	AK	٧	1	0	0	1	1	= Beispiel		

emcoair Bodenluftdurchlässe – Typ LBQ

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Bodenluftdurchlässe Typ LBQ

Gitter.

emcoair Gitter werden in der klassischen Lüftungs- und Heizungstechnik überall dort eingesetzt, wo Austrittsöffnungen in Boden, Wand und Decke anspruchsvoll und funktional abgedeckt werden sollen. Dabei lässt sich das gesamte Gitterprogramm nicht nur farblich an die Raumarchitektur anpassen, sondern in vielen Fällen auch als Gitterband produzieren. Aber auch in anderen Bereichen, wie zum Beispiel in der Möbelindustrie, sind diese Produkte aufgrund ihrer Vielseitigkeit und hochwertigen Qualität geschätzt und werden seit Jahren mit großem Erfolg eingesetzt. Ein Beweis dafür, dass emco Klima auch bei der Produktion einfacher Standardartikel nichts dem Zufall überlässt.

emcoair Gitter

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluft-

Weitwurf-

düsen

durchlässe

Kombiluftdurchlässe

Bodenluftdurchlässe

Gitter

Inhalt

Typ G311

Typ G328

Typ G341

Variantenschlüssel

Einleitung 196

Beschreibung Zu- und Abluftgitter, Zu- und Abluftgitterband 202
Variantenschlüssel 203

Variantenschlüssel 207

Einleitung

In der Klimatechnik gewinnt die Frage der Raumluftkonditionierung eine immer größere Bedeutung.

Galt es bisher lediglich den Faktor Behaglichkeit, das heißt u. a. zugfreie Luftführung unter Berücksichtigung räumlicher, thermischer und geschwindigkeits abhängiger Komponenten zu berücksichtigen, so ergibt sich heute zusätzlich die Auflage, diese Anforderungen unter energiesparenden Gesichtspunkten zu realisieren. Hierfür ist neben der Gesamtkonzeption einer Anlage die richtige Auswahl, Berechnung und Anforderung der Lüftungsgitter ein wesentlicher Bestandteil.

Die folgenden Ausführungen sollen dem Anwender dieser technischen Unterlagen die wichtigsten Formen und Kriterien von Luftstrahlen sowie deren Verhalten erläutern und die Auslegung und Auswahl der entsprechenden Produkte mit Hilfe der Auswahl-Diagramme erleichtern.

Die einzelnen Diagramme sind jeweils mit exemplarischen Beispielen versehen, die eine schnelle und problemlose Einarbeitung und Handhabung ermöglichen.

Sollten Sie dennoch Fragen haben, stehen wir Ihnen selbstverständlich gern zur Verfügung.

Für Anregungen, Verbesserungen und Hinweise sind wir Ihnen dankbar.

Die Auswahldiagramme geben das Verhalten von Luftstrahlen wieder, die sich nach Austritt aus einem Lüftungsgitter unbeeinflusst von Hindernissen im Raum ausbreiten können.

Die in einen begrenzten Raum eintretenden Luftstrahlen werden in ihrem Strömungsverhalten beeinflusst durch

- die Geometrie eines Raumes
- die Anordnung, Anzahl und Form der Zuluftöffnung
- die Temperaturdifferenz zwischen
 Zu- und Raumluft
- Einrichtungen im Raum, die den Strahl behindern
- Wärmequellen mit Eigenströmungen (Heizkörper, Ventilatoren etc.)

Um die in dieser Unterlage aufgeführten Diagramme sicher anwenden zu können, empfehlen wir einen Zuluftvolumenstrom, der zu einer Luftwechselrate von grundsätzlich Lw > 3 [1/h] führt.

Darüber hinaus sollte das Verhältnis zwischen Raumhöhe und Raumtiefe (Raumtiefe = Hauptströmungsrichtung der eingebrachten Luft) nicht größer als 4 bis 4,5 l/h sein.

Grundlagen und Systemvorteile

Drallluftdurchlässe

durchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Bodenluftdurchlässe

Raumlufttechnische Daten Gitter $A_{\rm eff}$ [m²] bzw. Gitterband [m²/m]

	Gittermaße H x L [mm]	G311 [m²]	GB311 [m²/m]	G328 [m²]	GB328 [m²/m]		341 n²]		3341 -{/m]
75 x 425 - - 0,006 - <						8 mm	12 mm	8 mm	12 mm
75 x 425 - - 0,008 - <	75 x 225	_	-	0,004	0,019	-	_	_	_
75 x 525 - - 0,010 - <	75 x 325	_	_	0,006	_	_	_	_	_
75 x 625 − − 0,012 − − − − 75 x 825 − − 0,016 − − − − 75 x 1025 − − 0,024 − − − − 75 x 1225 − − 0,024 − − − − 125 x 225 0,016 0,075 0,012 0,045 − − 0,041 0,048 125 x 325 0,024 − 0,014 − 0,012 0,014 − − 125 x 425 0,032 − 0,018 − 0,016 0,019 − − 125 x 525 0,040 − 0,023 − 0,020 0,024 − − 125 x 625 0,048 − 0,028 − 0,024 0,029 − − 125 x 1025 0,080 − 0,047 − 0,041 0,048 − − <th< th=""><th>75 x 425</th><th>_</th><th>_</th><th>0,008</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th></th<>	75 x 425	_	_	0,008	_	_	_	_	_
75 x 825 - - 0,016 - <	75 x 525	_	_	0,010	_	_	_	_	_
75 x 1025 — — 0,020 —	75 x 625	-	-	0,012	-	-	-	-	_
75 x 1225 - - 0,024 - - - - - - - - 1 - - - - - 0,041 0,048 125 x 325 0,024 - 0,014 - 0,012 0,014 -<	75 x 825	-	-	0,016	-	-	-	-	_
125 x 225 0,016 0,075 0,012 0,045 — — 0,041 0,048 125 x 325 0,024 — 0,014 — 0,012 0,014 — — 125 x 425 0,032 — 0,018 — 0,016 0,019 — — 125 x 525 0,040 — 0,023 — 0,020 0,024 — — 125 x 625 0,048 — 0,028 — 0,024 0,029 — — 125 x 1025 0,064 — 0,037 — 0,033 0,039 — — 125 x 1025 0,096 — 0,056 — 0,050 0,059 — — 125 x 1225 0,096 — 0,056 — 0,050 0,059 — — 125 x 1225 0,096 — 0,056 — 0,050 0,059 — — 125 x 1225 0,062 — 0,045	75 x 1025	-	-	0,020	-	_	-	-	_
125 x 325 0,024 - 0,014 - 0,012 0,014 - - 125 x 425 0,032 - 0,018 - 0,016 0,019 - - 125 x 525 0,040 - 0,023 - 0,020 0,024 - - 125 x 625 0,048 - 0,028 - 0,024 0,029 - - 125 x 825 0,064 - 0,037 - 0,033 0,039 - - 125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 - 0,041 - 0,036 0,041 - - 225 x 625 0,093 - 0,062 - 0,054 0,063 - - 225 x 1025 0,155	75 x 1225	-	-	0,024	-	-	-	-	_
125 x 425 0,032 - 0,018 - 0,016 0,019 - - 125 x 525 0,040 - 0,023 - 0,020 0,024 - - 125 x 625 0,048 - 0,028 - 0,024 0,029 - - 125 x 825 0,064 - 0,037 - 0,033 0,039 - - 125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 - 0,041 - 0,036 0,041 - - 225 x 625 0,093 - 0,062 - 0,045 0,063 - - 225 x 825 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,186	125 x 225	0,016	0,075	0,012	0,045	-	-	0,041	0,048
125 x 525 0,040 - 0,023 - 0,020 0,024 - - 125 x 625 0,048 - 0,028 - 0,024 0,029 - - 125 x 825 0,064 - 0,037 - 0,033 0,039 - - 125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 125 x 1225 0,096 - 0,030 0,099 0,026 0,030 0,089 0,105 125 x 1225 0,062 - 0,041 - 0,045 0,052 - - 125 x 825 0,124 - 0,083	125 x 325	0,024	-	0,014	-	0,012	0,014	-	_
125 x 625 0,048 - 0,028 - 0,024 0,029 - - 125 x 825 0,064 - 0,037 - 0,033 0,039 - - 125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 - 0,041 - 0,036 0,041 - - 225 x 525 0,077 - 0,051 - 0,045 0,052 - - 225 x 625 0,093 - 0,062 - 0,054 0,063 - - 225 x 625 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 325 x 425 0,115	125 x 425	0,032	-	0,018	-	0,016	0,019	-	_
125 x 825 0,064 - 0,037 - 0,033 0,039 - - 125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 - 0,041 - 0,036 0,041 - - 225 x 525 0,077 - 0,051 - 0,045 0,052 - - 225 x 625 0,093 - 0,062 - 0,045 0,063 - - 225 x 825 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 225 x 1025 0,186 - 0,125 - 0,110 0,128 - - 325 x 625 0,138	125 x 525	0,040	-	0,023	-	0,020	0,024	-	_
125 x 1025 0,080 - 0,047 - 0,041 0,048 - - 125 x 1225 0,096 - 0,056 - 0,050 0,059 - - 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 - 0,041 - 0,036 0,041 - - 225 x 525 0,077 - 0,051 - 0,045 0,052 - - 225 x 625 0,093 - 0,062 - 0,054 0,063 - - 225 x 825 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 225 x 1225 0,186 - 0,125 - 0,110 0,128 - - 325 x 425 0,192 0,225 0,063 0,154 0,069 0,079 - - 325 x 625 0,	125 x 625	0,048	-	0,028	-	0,024	0,029	-	_
125 x 1225 0,096 — 0,056 — 0,050 0,059 — — 225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 — 0,041 — — — 225 x 525 0,077 — 0,051 — 0,045 0,052 — — 225 x 625 0,093 — 0,062 — 0,054 0,063 — — 225 x 825 0,124 — 0,083 — 0,073 0,085 — — 225 x 1025 0,155 — 0,104 — 0,092 0,107 — — 225 x 1225 0,186 — 0,125 — 0,110 0,128 — — 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 — — 325 x 625 0,138 — 0,099 — 0,099 — — 325 x 825 0,184 — 0,128 —	125 x 825	0,064	-	0,037	-	0,033	0,039	-	_
225 x 325 0,046 0,150 0,030 0,099 0,026 0,030 0,089 0,105 225 x 425 0,062 — 0,041 — 0,036 0,041 — — 225 x 525 0,077 — 0,051 — 0,045 0,052 — — 225 x 625 0,093 — 0,062 — 0,054 0,063 — — 225 x 825 0,124 — 0,083 — 0,073 0,085 — — 225 x 1025 0,155 — 0,104 — 0,092 0,107 — — 225 x 1225 0,186 — 0,125 — 0,110 0,128 — — 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 — — 325 x 625 0,138 — 0,079 — 0,069 0,079 — — 325 x 825 0,184 — 0,	125 x 1025	0,080	-	0,047	-	0,041	0,048	-	-
225 x 425 0,062 — 0,041 — 0,036 0,041 — — 225 x 525 0,077 — 0,051 — 0,045 0,052 — — 225 x 625 0,093 — 0,062 — 0,054 0,063 — — 225 x 825 0,124 — 0,083 — 0,073 0,085 — — 225 x 1025 0,155 — 0,104 — 0,092 0,107 — — 225 x 1225 0,186 — 0,125 — 0,110 0,128 — — 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 — — 325 x 525 0,115 — 0,079 — 0,069 0,079 — — 325 x 625 0,138 — 0,096 — 0,083 0,097 — — 325 x 825 0,184 — 0,128 — 0,113 0,130 — — 325 x 1025 0,230 <t< th=""><th>125 x 1225</th><th>0,096</th><th>-</th><th>0,056</th><th>-</th><th>0,050</th><th>0,059</th><th>-</th><th>-</th></t<>	125 x 1225	0,096	-	0,056	-	0,050	0,059	-	-
225 x 525 0,077 - 0,051 - 0,045 0,052 - - 225 x 625 0,093 - 0,062 - 0,054 0,063 - - 225 x 825 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 225 x 1225 0,186 - 0,125 - 0,110 0,128 - - 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 - - 325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 325	0,046	0,150	0,030	0,099	0,026	0,030	0,089	0,105
225 x 625 0,093 - 0,062 - 0,054 0,063 - - 225 x 825 0,124 - 0,083 - 0,073 0,085 - - 225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 225 x 1225 0,186 - 0,125 - 0,110 0,128 - - 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 - - 325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 425	0,062	-	0,041	-	0,036	0,041	-	-
225 x 825 0,124 — 0,083 — 0,073 0,085 — — 225 x 1025 0,155 — 0,104 — 0,092 0,107 — — 225 x 1225 0,186 — 0,125 — 0,110 0,128 — — 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 — — 325 x 525 0,115 — 0,079 — 0,069 0,079 — — 325 x 625 0,138 — 0,096 — 0,083 0,097 — — 325 x 825 0,184 — 0,128 — 0,113 0,130 — — 325 x 1025 0,230 — 0,161 — 0,142 0,165 — —	225 x 525	0,077	-	0,051	_	0,045	0,052	_	_
225 x 1025 0,155 - 0,104 - 0,092 0,107 - - 225 x 1225 0,186 - 0,125 - 0,110 0,128 - - 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 - - 325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 625	0,093	-	0,062	_	0,054	0,063	_	_
225 x 1225 0,186 - 0,125 - 0,110 0,128 - - 325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 - - 325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 825	0,124	-	0,083	_	0,073	0,085	_	_
325 x 425 0,092 0,225 0,063 0,154 0,054 0,063 - - 325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 1025	0,155	-	0,104	_	0,092	0,107	_	_
325 x 525 0,115 - 0,079 - 0,069 0,079 - - 325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	225 x 1225	0,186	-	0,125	-	0,110	0,128	-	-
325 x 625 0,138 - 0,096 - 0,083 0,097 - - 325 x 825 0,184 - 0,128 - 0,113 0,130 - - 325 x 1025 0,230 - 0,161 - 0,142 0,165 - -	325 x 425	0,092	0,225	0,063	0,154	0,054	0,063	-	-
325 x 825 0,184 − 0,128 − 0,113 0,130 − − 325 x 1025 0,230 − 0,161 − 0,142 0,165 − −	325 x 525	0,115	-	0,079	-	0,069	0,079	_	_
325 x 1025 0,230 - 0,161 - 0,142 0,165	325 x 625	0,138	-	0,096	-	0,083	0,097	-	_
	325 x 825	0,184	-	0,128	-	0,113	0,130	-	_
325 x 1225 0,276 - 0,193 - 0,171 0,198	325 x 1025	0,230	-	0,161	-	0,142	0,165	-	_
	325 x 1225	0,276	-	0,193	-	0,171	0,198	_	_

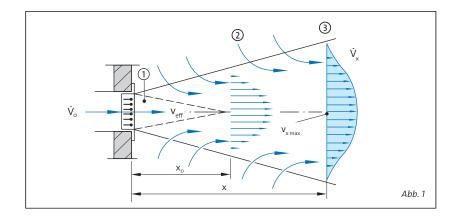

Raumluftströmung / Grundlagen / Funktionsweise

Abbildung 1

Die Abb. zeigt den Strömungsverlauf eines isothermen Freistrahls (d. h. Luftstrahl- und Raumlufttemperatur sind gleich groß).

In der Kernströmung ① (Primärluft) von der Länge \mathbf{x}_0 behält der Freistrahl seine ursprüngliche Geschwindigkeit bei. An der Grenzfläche zwischen strömender und ruhender Luft wird infolge Reibung Luft ② (Sekundärluft) aus dem Raum mitgeführt.

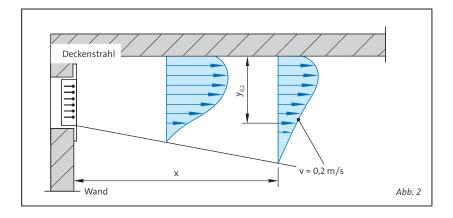
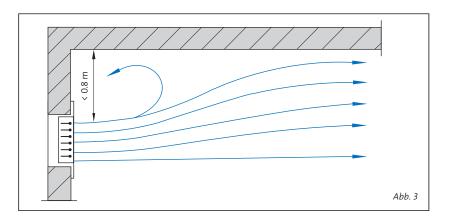

Durch Verwirbelung in der Mischzone 3 wird die Strahlaustrittsgeschwindigkeit v_{eff} auf die Geschwindigkeit v_{max} abgebaut. Der im Strahl mitgeführte Gesamtvolumenstrom \dot{V}_x setzt sich hier aus Sekundär- und Primärluft zusammen.

Abbildung 2


Wird ein Lüftungsgitter in einer Seitenwand unmittelbar unter der Decke eingelassen, so legt sich der Strahl an die Decke an. Die Geschwindigkeitsabnahme im Deckenstrahl ist geringer als im Freistrahl. Dadurch wird ein größerer Strahlweg x – Wurfweite – erreicht

 $y_{0,2}$ ist der Abstand von der Strahlachse (Freistrahl) bzw. Decke (Deckenstrahl), bei dem die Geschwindigkeit $v \approx 0,2$ m/s beträgt.

Abbildung 3

Wird das Lüftungsgitter in einer Seitenwand in einer geringeren Entfernung von der Decke als 0,8 m eingelassen, so legt sich der austretende Strahl nach einer bestimmten Entfernung an die Decke an (Coanda-Effekt). Dadurch wird ebenfalls ein größerer Strahlweg x (Wurfweite) erreicht.

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

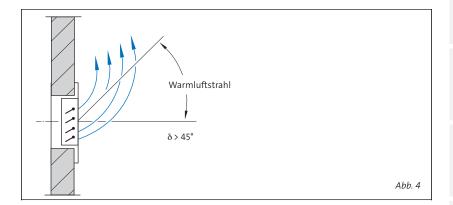
Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

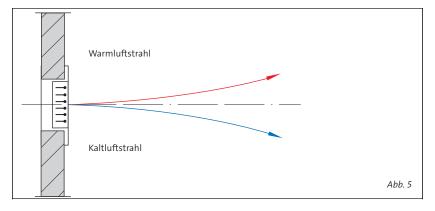

Bodenluftdurchlässe

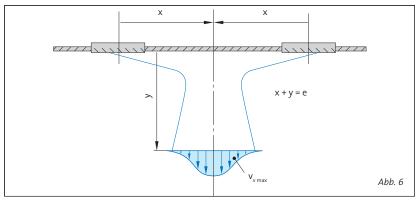
Raumluftströmung / Grundlagen / Funktionsweise

Abbildung 4

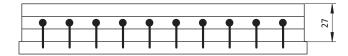
Wird ein Luftstrahl durch das Lüftungsgitter unter einem Winkel $\delta > 45^{\circ}$ abgelenkt, so legt sich der Strahl an die Bezugswand an.

Das Verhalten des Luftstrahls lässt sich bei entsprechend eingebauten Lüftungsgittern auch auf Wand und Boden übertragen.


Abbildung 5


Der Luftstrahl wird nicht nur durch bautechnische und räumliche Gegebenheiten, sondern zusätzlich noch durch thermische Auf- und Abtriebskräfte beeinflusst.

Die Abb. zeigt schematisch die Richtungstendenz eines anisothermen Freistrahls, d. h. Luftstrahl- und Raumlufttemperatur sind nicht gleich groß.



Treffen zwei Deckenstrahlen gegeneinander, so beträgt die max. vertikale Strahlgeschwindigkeit $v_{v max}$ nach dem Strahlweg x + y = e

Standardanbauteil Lenksatz L mit vertikal bzw. horizontal einzeln einstellbaren Lamellen

Grundlagen und Systemvorteile

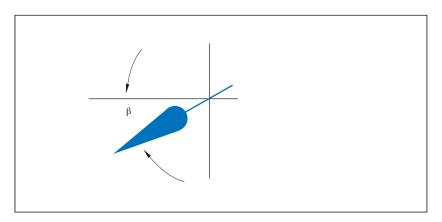
Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

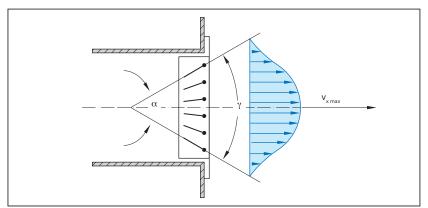
Quellluftdurchlässe


Industrieluftdurchlässe

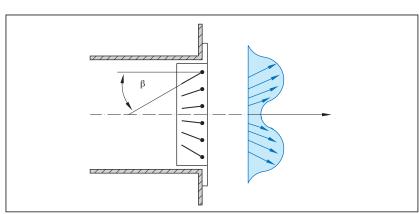
Weitwurfdüsen

Auslegung:

Strahllenkung und -spreizung


Durch das Verstellen der Frontlamellen eines Gitters kann eine Strahlspreizung oder eine Strahllenkung erzielt werden. Dabei ändern sich in Abhängigkeit vom Lamellenanstellwinkel β der Strahlweg x, die Geschwindigkeit v_{xmax} in der Strahlmitte und der Druckverlust Δp_t .

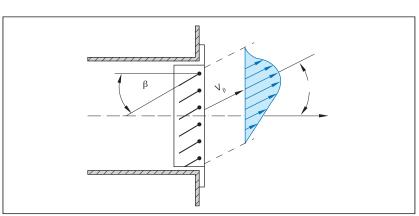
Strahlspreizung


Lamellen von innen nach außen stetig divergierend.

Gitteröffnungswinkel α	45°	90°
Strahlöffnungswinkel γ	40°	70°

Strahllenkung

Jeweils die Hälfte der Lamellen mit gleichem positivem bzw. negativem Anstellwinkel β. Der Strahl wird in zwei Teilstrahlen unterteilt.



Alle Lamellen mit dem gleichen Anstellwinkel β

Der Anstellwinkel δ entspricht ungefähr dem Lamellenanstellwinkel β ($\delta \approx \beta$). Die Luftaustrittsgeschwindigkeit v_{β} ist bei der Strahllenkung größer als v_{eff} .

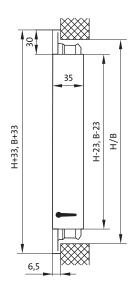
β	0°	15°	30°	45°
K	1,0	1,04	1,15	1,41

$$V_{\beta} = K \cdot X \cdot V_{\text{eff}}$$
 $V_{\text{eff}} = \frac{\dot{V}_{0}}{A_{\text{reff}}}$

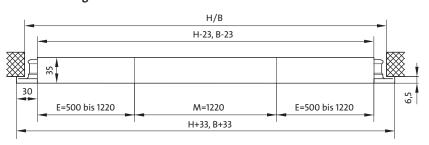
emcoair Zu- und Abluftgitter G311

mit verstellbaren Lamellen aus Aluminium, natur-eloxiert (E6/C0). Frontlamellen waagerecht einzeln einstellbar. Standard-Anbauteile aus stahlverzinktem Material, schwarz einbrennlackiert.

Befestigung: durch Einbaurahmen mit verdecktem Drehriegel oder durch versenkte Schraublöcher in der Blende.



emcoair Zu- und Abluftgitterband G311


emcoair Gitterbänder werden in montagefreundlichen Teilstücken nach Werksnorm in den Höhen 125, 225 und 325 geliefert. Die mittleren Teilstücke "M" besitzen eine feste Länge von 1220 mm, die beiden Endstücke "E" werden der Gesamtlänge des Gitterbandes angepasst. Die Endstückenlängen variieren zwischen 500 mm und 1220 mm, so dass bei entsprechender

Bandlänge ein Band auch aus zwei Endstücken bestehen kann. Standard- und Sonderanbauteile (gemäß Variantenschlüssel) wie Schöpfzunge, Lenksatz, Schlitzschieber: siehe emcoair Gitter Standard- und Sonderbauteile.

Zu- und Abluftgitter G311

Zu- und Abluftgitterband G311

Einbaumaße mit Einbaurahmen: H/B = Ausschnittmaß Einbaumaße ohne Einbaurahmen: H/B - 8 mm = Ausschnittmaß

Grundlagen und Systemvorteile

Drallluft-

durchlässe Stelle Variantenschlüssel für Typ G311 1 = emcoair G311 = G311 Zu- und Abluftgitter 2 - 5 Deckenluftdurchlässe 0125 = 125 mm Höhe 0225 = 225 mm 0325 = 325 mm XXXX = Angabe der Höhe in mm 6 - 9 Schlitzluft-00225 = 225 mm Breite durchlässe 00325 = 325 mm 00425 = 425 mm 00525 = 525 mm $00625 = 625 \, \text{mm}$ Rundrohrluft-00825 = 825 mm durchlässe 01025 = 1025 mm 01225 = 1225 mm 10 - 14 XXXXX = Angabe der Breite in mm E6C0 = naturfarbig eloxiert Quellluftdurchlässe 9010 = RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton Industrieluft-RALG = RAL-Classic-Ton durchlässe YYYY = Sonder XXXX = RAL-Classic nach Wahl 15 - 18 00 = Anbauteile ohne LO = mit Lenksatz Weitwurf-SE = mit Schlitzschieber SK = mit schrägem Schieberkasten LE = mit Lenksatz und Schlitzschieber LK = mit Lenksatz und schrägem Schieberkasten 19 - 20 B = mit versenkten Schraublöchern in der Blende Kombiluftdurchlässe D = mit verdeckten Drehriegeln am Gitter 0 = ohne Schraubbefestigung 00 = 20 mm Lamellenabstand 22 - 23 1 = Anordnung in Einzelposition **Bodenluft-**5 = Bandanordnung durchlässe 2 = Anordnung am Bandanfang 3 = Anordnung in der Bandmitte 4 = Anordnung am Bandende 0 = ohne Einbaurahmen 1 = mit Einbaurahmen Typ G311 25 Lamellenabstand (mm) Unternehmenssparte **Befestigungsart** Breite (mm) Anbauteile Anordnung Höhe (mm) Oberfläche

Artikel

Zubehör

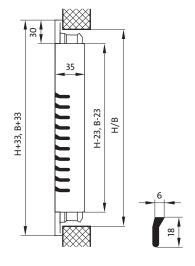
E6CO 00 B 00 1 0 = Beispiel

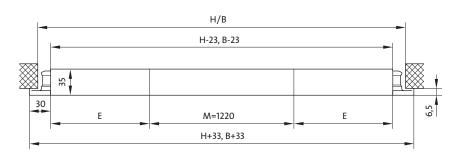
Preise variantengenau

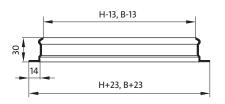
im Typenkonfigurator unter

www.emco-klima.com/G311

emcoair Zu- und Abluftgitter G328


aus Aluminium, natur-eloxiert (E6/C0). Frontlamellen waagerecht, starr. Standard-Anbauteile aus stahlverzinktem Material, schwarz, einbrennlackiert.


Befestigung: durch Einbaurahmen mit verdecktem Drehriegel oder wahlweise durch versenkte Schraublöcher in der Blende.



emcoair Zu- und Abluftgitterband G328

emcoair Gitterbänder werden in montagefreundlichen Teilstücken nach Werksnorm in den Höhen 75, 125, 225 und 325 geliefert. Die mittleren Teilstücke "M" besitzen eine feste Länge von 1220 mm, die beiden Endstücke "E" werden der Gesamtlänge des Gitterbandes angepasst. Einbaumaße mit Einbaurahmen: H/B = Ausschnittmaß Einbaumaße ohne Einbaurahmen: H/B – 8 mm = Ausschnittmaß

Einbaurahmen E für Gitter G328

Grundlagen und Systemvorteile

Drallluftdurchlässe

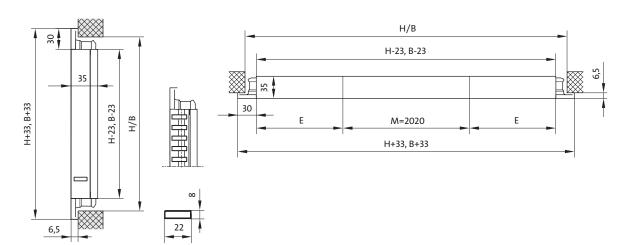
Variantenschlüssel für Typ G328 Stelle 1 = emcoair G328 = G328 Zu- und Abluftgitter 2 - 5 Deckenluftdurchlässe 0075 = 75 mm Höhe 0125 = 125 mm0225 = 225 mm 0325 = 325 mm Schlitzluft-XXXX = Angabe der Höhe in mm durchlässe 00225 = 225 mm Breite $00325 = 325 \, \text{mm}$ 00425 = 425 mm $00525 = 525 \, \text{mm}$ Rundrohrluft-00625 = 625 mm durchlässe $00825 = 825 \, \text{mm}$ 01025 = 1025 mm 01225 = 1225 mm XXXXX = Angabe der Breite in mm 10 - 14 Quellluftdurchlässe E6C0 = naturfarbig eloxiert 9010 = RAL-Ton 9010 glänzend ONCS = NCS-Ton 00DB = DB-Lack Industrieluft-RALP = RAL-PEARL-Ton durchlässe RALG = RAL-Classic-Ton YYYY = Sonder XXXX = RAL-Classic nach Wahl 15 - 18 00 = ohne Anbauteile Weitwurf-LO = mit Lenksatz 19 - 20 düsen SE = mit Schlitzschieber SK = mit schrägem Schieberkasten LE = mit Lenksatz und Schlitzschieber LK = mit Lenksatz und schrägem Schieberkasten 19 - 20 Kombiluftdurchlässe B = mit versenkten Schraublöchern in der Blende D = mit verdeckten Drehriegeln im Einbaurahmen 0 = ohne Schraubbefestigung 21 00 = 14 mm Lamellenabstand (werkseitig fix) 22 - 23 **Bodenluft-**1 = Anordnung in Einzelposition durchlässe 5 = Bandanordnung 2 = Anordnung am Bandanfang 3 = Anordnung in der Bandmitte 4 = Anordnung am Bandende 0 = ohne Einbaurahmen Typ G328 1 = mit Einbaurahmen 25 Lamellenabstand (mm) Unternehmenssparte Befestigungsart Anordnung Zubehör Breite (mm) Höhe (mm) Anbauteile Oberfläche Preise variantengenau

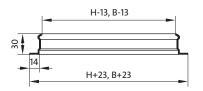
Artikel

00225 E6C0 00 B 00 1 0 = Beispiel

im Typenkonfigurator unter

www.emco-klima.com/G328


emcoair Zu- und Abluftgitter G341


Lüftungsgitter in stabiler, "ballwurfsicherer" Ausführung (DIN 18032); Standard-Anbauteile aus stahlverzinktem Material, schwarz einbrennlackiert. Lamellen und Blende aus Aluminium natur-eloxiert (E6/C0). Stababstand 8 oder 12 mm. Befestigung: durch versenkte Schraublöcher in der Blende.

emcoair Zu- und Abluftgitterband G341

emcoair Gitterbänder werden in montagefreundlichen Teilstücken nach Werksnorm in den Höhen 125, 225 und 325 geliefert. Die mittleren Teilstücke "M" besitzen eine feste Länge von 2020 mm, die beiden Endstücke "E" werden der Gesamtlänge des Gitterbandes angepasst. Einbaumaße mit Einbaurahmen: H/B = Ausschnittmaß Einbaumaße ohne Einbaurahmen: H/B - 8 mm = Ausschnittmaß

Einbaurahmen E für Gitter G341

Grundlagen und Systemvorteile

Drallluft-

durchlässe Variantenschlüssel für Typ G341 Stelle 1 = emcoair G341 = G341 Zu- und Abluftgitter Deckenluftdurchlässe 0125 = 125 mm Höhe 0225 = 225 mm 0325 = 325 mm XXXX = Angabe der Höhe in mm 6 - 9 Schlitzluft-00325 = 325 mm Breite durchlässe 00425 = 425 mm $00525 = 525 \, \text{mm}$ 00625 = 625 mm 00825 = 825 mm Rundrohrluft-01025 = 1025 mm durchlässe 01225 = 1225 mm XXXXX = Angabe der Breite in mm 10 - 14 E6C0 = naturfarbig eloxiert 9010 = RAL-Ton 9010 glänzend Quellluftdurchlässe ONCS = NCS-Ton 00DB = DB-Lack RALP = RAL-PEARL-Ton RALG = RAL-Classic-Ton Industrieluft-YYYY = Sonder durchlässe XXXX = RAL-Classic nach Wahl 15 - 18 00 = Anbauteile ohne LO = mit Lenksatz SE = mit Schlitzschieber Weitwurf-SK = mit schrägem Schieberkasten düsen LE = mit Lenksatz und Schlitzschieber LK = mit Lenksatz und schrägem Schieberkasten 19 - 20 B = mit Schraubbefestigung 0 = ohne Schraubbefestigung 21 Kombiluftdurchlässe 08 = 8 mm Lamellenabstand 12 = 12 mm22 - 23 1 = Anordnung in Einzelposition 5 = Bandanordnung Bodenluft-2 = Anordnung am Bandanfang durchlässe 3 = Anordnung in der Bandmitte 4 = Anordnung am Bandende 0 = ohne Einbaurahmen 1 = mit Einbaurahmen 25 Typ G341 Lamellenabstand (mm) Unternehmenssparte **Befestigungsart** Anordnung Zubehör Breite (mm) Anbauteile Höhe (mm) Oberfläche Preise variantengenau

Artikel

00325

E6CO 00 B 08 1 0 = Beispiel

im Typenkonfigurator unter

www.emco-klima.com/G341

Klappen und Regler.

Moderne Klimaanlagen garantieren bei niedrigstem Energieverbrauch hohen, gleichbleibenden Komfort und Sicherheit. Um dies zu erreichen, müssen Luftvolumenströme exakt im Gebäude verteilt werden und im Brandfall die einzelnen geplanten Brandabschnitte sicher abgeschottet werden. Zusätzlich kann die Luftführung durch den Einsatz dieser Systeme bereits so geplant werden, dass umständliche und kostenintensive Einregulierungsarbeiten bei der Inbetriebnahme eingespart werden können. Ein strömungstechnisch optimales Design ist dabei ebenso zu berücksichtigen wie auch eine exakte Regel- und Steuer-barkeit. Die Regler und Klappen aus dem aktuellen Liefer-programm umfassen sowohl rein mechanische Systeme, die automatisch konstante Volumenströme regulieren oder als Festwiderstände eingesetzt werden können, als auch voll elektronische Komponenten.

Neben strömungs- und brandschutztechnischen Anwendungen finden die Klappen vor allem in Kombination mit Wetterschutz- und akustisch wirksamen Spezialgittern ihren Einsatz. Als sichere, auch luftdichte Absperrung verhindern sie mit speziell ausgebildeten Lamellenprofilen das Eindringen von Schlagregen und Verschmutzungen und schützen somit nachhaltig die Klimaanlage. Um zu hohe akustische Belastungen des direkten Umfeldes zu vermeiden, können zusätzlich schalldämmende Ausführungen eingesetzt werden, die durch ihre hohe Einfügungsdämpfung den Schalldruckpegel im Umfeld drastisch senken.

emcoair Klappen und Regler

Grundlagen und Systemvorteile

Drallluft-durchlässe

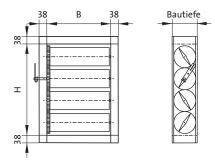
Deckenluftdurchlässe

Gitter

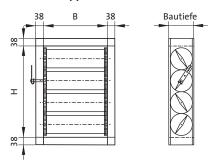
Klappen und Regler

Inhalt

Jalousieklappen Typen JKS481, JKS482, JKD485, JKD486	Schlitzluft-
Beschreibung und Abmessungen	durchlässe
Variantenschlüssel:	
Typ JKS481	
Typ JKS482	Rundrohrluft- durchlässe
Typ JKD485	
Typ JKD486	
Luftvolumenstromregler Typen VR10, VR20, VR31–33	Quellluft-
Beschreibung, Einsatzbereiche, Konstrukt. Aufbau, Funktionsweise	durchlässe
Technische Daten und Abmessungen	
Variantenschlüssel	
Elektronischer Luftvolumenstromregler Typ EVR	Industrieluft- durchlässe
Beschreibung, Einsatzbereiche, Konstrukt. Aufbau, Funktionsweise	
Abmessungen und Gewichte	
Variantenschlüssel	Weitwurf-
Elektronischer Luftvolumenstromregler	düsen
Beschreibung, Einsatzbereiche, Konstruktiver Aufbau:	
Typ VRJS – Standard	
Typ VRJA – AEROSOL	Kombiluft-
Funktionsweise und Einbauhinweise	durchlässe
Technische Daten	
Variantenschlüssel	
Übersicht und Zuordnung der wählbaren Antriebe	Bodenluft- durchlässe


emcoair Jalousieklappe JK481 (175 mm Bautiefe) und JK482 (120 mm Bautiefe) Standardausführung

emcoair Jalousieklappe JK485 (175 mm Bautiefe) und JK486 (120 mm Bautiefe) luftdichte Ausführung Der Rahmen aus stahlverzinktem Material ist C-förmig profiliert und gewährleistet universelle Einbaumöglichkeiten.


Die gegenläufig gekoppelten Lamellen sind als verwindungssteife Hohlprofile ausgebildet und arbeiten mit besonders günstigen Antriebs- und Strömungsverhältnissen.

Die Steuerung der Lamellen erfolgt über einseitig (JKS) oder beidseitig (JKD) angeordnete Aluminium-Zahnräder. Die Wellenlagerung besteht aus wartungsfreiem Polyamid. Lieferbare Größen und Ausführungen: Siehe Variantenschlüssel (auch Zwischenmaße sind lieferbar).

Jalousieklappe JK481/JK482

Jalousieklappe JK485/JK486

Abmessungen JK

[mm]	JK481	JK482	JK485	JK486
Bautiefe	175	120	175	120
Lamellentiefe	165	100	165	100

emcoair Klappen und Regler – Jalousieklappen

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ JKS481 1 = emcoair JKS = Jalousieklappe Typ JKS481 2 - 4 Deckenluftdurchlässe 175 = 175 mm Tiefe 0345 = 345 mm Höhe 0510 = 510 mm 0675 = 675 mm 0840 = 840 mm Schlitzluft-1005 = 1005 mm durchlässe 1170 = 1170 mm 1335 = 1335 mm 1500 = 1500 mm 1665 = 1665 mm Rundrohrluft-1830 = 1830 mm durchlässe 1995 = 1995 mm 8 - 11 XXXX = Angabe der Sonderhöhe in mm 0400 = 400 mm Breite $0600 = 600 \, \text{mm}$ Quellluft-0800 = 800 mm durchlässe 1000 = 1000 mm 1200 = 1200 mm1400 = 1400 mm1600 = 1600 mm Industrieluft-1800 = 1800 mm durchlässe 2000 = 2000 mm XXXX = Angabe der Sonderbreite in mm 12 - 15 V = Werkstoff Stahl, verzinkt A = Aluminium Weitwurf-E = Edelstahl V2A düsen S = Edelstahl V4A P = Werkstoff Lamellenlager Polyamid M = Messing T = Teflon Kombiluft-K = Kugellager durchlässe 00 = Handverstellhebel HF = Handfeststellvorrichtung MK = Motorkonsole für Stellantrieb 18 - 19 0 = ohne Dichtlippen Bodenluft-5 = mit Dichtlippen aus Gummi durchlässe 7 = mit Dichtlippen aus Silikon 20 0 = Steuerung/Antrieb der Lamellen über innen liegende Zahnräder 1 = Steuerung/Antrieb der Lamellen über außen liegendes Gestänge 21 Gitter Werkstoff Lamellenlager Jalousie klappen Unternehmenssparte Lamellenverstellung Lippendichtung Breite (mm) Verstellung Preise variantengenau Höhe (mm) Tiefe (mm) Werkstoff im Typenkonfigurator unter www.emco-klima.com/JKS

Variantenschlüssel für Typ JKS482 1 = emcoair JKS = Jalousieklappe Typ JKS482 2 - 4 120 = 120 mm Tiefe 5 - 7 0200 = 200 mm Höhe 0300 = 300 mm0400 = 400 mm 0500 = 500 mm0600 = 600 mm 0700 = 700 mm0800 = 800 mm0900 = 900 mm 1000 = 1000 mmXXXX = Angabe der Höhe in mm 8 - 11 0200 = 200 mm Breite 0300 = 300 mm0400 = 400 mm0500 = 500 mm0600 = 600 mm0700 = 700 mm0800 = 800 mm 0900 = 900 mm 1000 = 1000 mmXXXX = Angabe der Breite in mm V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A S = Edelstahl V4A 16 P = Werkstoff Lamellenlager Polyamid M = Messing T = Teflon K = Kugellager 00 = Handverstellhebel HF = Handfeststellvorrichtung MK = Motorkonsole für Stellantrieb 18 - 19 0 = ohne Dichtlippen 5 = mit Dichtlippen aus Gummi 7 = mit Dichtlippen aus Silikon 0 = Steuerung/Antrieb der Lamellen über innen liegende Zahnräder 1 = Steuerung/Antrieb der Lamellen über außen liegendes Gestänge 21 Werkstoff Lamellenlager **-** Unternehmenssparte Lamellenverstellung Lippendichtung Verstellung Breite (mm) Tiefe (mm) Preise variantengenau Höhe (mm) Werkstoff im Typenkonfigurator unter www.emco-klima.com/JKS 0200 0200 V P 00 0 0 = Beispiel

Stelle

emcoair Klappen und Regler – Jalousieklappen

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ JKD485 1 = emcoair JKD = Jalousieklappe Typ JKD485 2 - 4 Deckenluft-175 = 175 mm Tiefe 5 - 7 durchlässe 0345 = 345 mm Höhe 0510 = 510 mm 0675 = 675 mm 0840 = 840 mm Schlitzluft-1005 = 1005 mm durchlässe 1170 = 1170 mm 1335 = 1335 mm 1500 = 1500 mm 1665 = 1665 mm Rundrohrluft-1830 = 1830 mm durchlässe 1995 = 1995 mm XXXX = Angabe der Sonderhöhe in mm 8 - 11 0400 = 400 mm Breite 0600 = 600 mmQuellluft-0800 = 800 mmdurchlässe 1000 = 1000 mm 1200 = 1200 mm 1400 = 1400 mm 1600 = 1600 mm Industrieluft-XXXX = Angabe der Sonderbreite in mm durchlässe V = Werkstoff Klappe Stahl, verzinkt A = Aluminium E = Edelstahl V2A nur mit Gestänge außen liegend S = Edelstahl V4A nur mit Gestänge außen liegend Weitwurf-P = Werkstoff Lamellenlager Polyamid düsen M = Messing T = Teflon K = Kugellager 00 = Handverstellhebel Kombiluft-HF = Handfeststellvorrichtung durchlässe 18 - 19 MK = Motorkonsole für Stellantrieb 0 = Steuerung/Antrieb der Lamellen über innen liegende Zahnräder 1 = Steuerung/Antrieb der Lamellen über außen liegendes Gestänge 20 Bodenluftdurchlässe Gitter Werkstoff Lamellenlager Unternehmenssparte Lamellenverstellung Breite (mm) Preise variantengenau Höhe (mm) Tiefe (mm) Werkstoff im Typenkonfigurator unter www.emco-klima.com/JKD

Variantenschlüssel für Typ JKD486 JKD = Jalousieklappe Typ JKD486 2 - 4 120 = 120 mm Tiefe 5 - 7 0200 = 200 mm Höhe 0300 = 300 mm0400 = 400 mm 0500 = 500 mm0600 = 600 mm 0700 = 700 mm0800 = 800 mm0900 = 900 mm1000 = 1000 mmXXXX = Angabe der Sonderhöhe in mm 8 - 11 0200 = 200 mm Breite 0300 = 300 mm0400 = 400 mm0500 = 500 mm0600 = 600 mm0700 = 700 mm0800 = 800 mm 0900 = 900 mm 1000 = 1000 mm XXXX = Angabe der Sonderbreite in mm V = Werkstoff Stahl, verzinkt A = Aluminium E = Edelstahl V2A nur mit Gestänge außen liegend S = Edelstahl V4A nur mit Gestänge außen liegend 16 P = Werkstoff Lamellenlager Polyamid M = Messing T = Teflon K = Kugellager 00 = Handverstellhebel HF = Handfeststellvorrichtung MK = Motorkonsole für Stellantrieb 18 - 19 0 = Steuerung/Antrieb der Lamellen über innen liegende Zahnräder 1 = Steuerung/Antrieb der Lamellen über außen liegendes Gestänge Werkstoff Lamellenlager Unternehmenssparte Artikel Lamellenverstellung Breite (mm) Preise variantengenau Höhe (mm) Tiefe (mm) Werkstoff im Typenkonfigurator unter www.emco-klima.com/JKD 0200 0200 V P 00 0 = Beispiel

Stelle

emcoair Klappen und Regler – Jalousieklappen

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Bodenluftdurchlässe

Gitter

Klappen und Regler Jalousie-Klappen

emcoair Luftvolumenstromregler VR 10 – VR 33

Die Luftvolumenstromregler arbeiten in der Grundausführung ohne Hilfsenergie und halten den Luftvolumenstrom innerhalb eines sich ändernden Druckbereiches konstant.

In einer erweiterten Variante kann der Luftvolumenstrom über einen elektrischen oder pneumatischen Stellmotor zwischen einem Minimalund Maximalwert verändert werden. Damit ist ein Einsatz in Luftvolumenstromsystemen mit verschiedenen Lastbereichen bzw. in VVS-Systemen möglich.

Einsatzbereiche

- In Konstantvolumenstromsystemen
- In variablen Volumenstromsystemen (VVS)
- In lufttechnischen Anlagen mit zwei Lastbereichen wie z. B. Tagund Nacht- oder Sommer- und Winterschaltung
- Lageunabhängig in Rohrleitungssystemen
- In Zuluft- oder Abluftleitungen
- Bei Temperaturen zwischen −20°C und +100°C

Kennzeichen

- Stabile Ausführung
- Hohe Ansprechempfindlichkeit
- Hohe Regelgenauigkeit (Abweichung 5 10%)
- Wartungsfreiheit
- Montagefreundlichkeit
- Selbständige Regelung ohne Fremdenergie

Konstruktiver Aufbau

Der Rohrkörper besteht aus sendzimirverzinktem Stahlblech, "laserstumpfgeschweißt". Das "Lasernaht"-Rohrbildet eine glatte Oberfläche ohne Überlappungssprung, so dass eine dichte Rohrverbindung entstehen kann.

Die Rohrkörper werden mit Rollgummidichtung gefertigt. Durch eine umlaufende Sicke wird eine große Steifigkeit erreicht. Beim Einsatz der Rollgummidichtung entfällt das zusätzliche Abdichten der Verbindungsstelle. Die Rohrkörper entsprechen in ihren Durchmessern und Durchmessertoleranzen der Norm für runde Leitungsbauteile.

Die Regelplatte ist reibungsarm in Speziallagern aus PTFE geführt. Zum Ausgleich von Luftschwingungen wird der Luftvolumenstromregler mit einem Dämpfer ausgerüstet. Der Dämpfer ist an der Regelplatte befestigt und verhindert eine Resonanz der Klappe. Die Regelplatte ist über ein Hebelsystem mit Stellfeder mit der am Rohrkörper außen angebrachten Einstellvorrichtung verbunden.
In Abhängigkeit vom Einsatzfall können die Volumenstromregler auch aus Edelstahl oder in PUR-Lackierung hergestellt werden.
Generell sind Rohrkörper und Anbau-

Generell sind Rohrkörper und Anbauteile so konzipiert, dass die Dichtigkeit der Rohrkörper entsprechend der Norm für runde Bauteile erfüllt wird. Leckverluste und Pfeifgeräusche werden so sicher vermieden.

Funktionsweise

Der Luftvolumenstromregler ist ein selbsttätiges, ohne Hilfsenergie arbeitendes Regelelement. Die Regelung erfolgt über eine beidseitig gelagerte Regelplatte und ein daran angeschlossenes Hebelsystem mit Stellfeder. Aufgrund der Geometrie der Regelplatte wird ein frühzeitiges Ansprechen bei niedrigen Differenzdrücken am Regler erreicht. Die Auswahl der Feder und die Hebelgeometrie gewährleisten, dass sich für den jeweiligen Differenzdruck eine definierte Klappenstellung ergibt und somit der eingestellte Volumenstrom konstant gehalten wird.

emcoair Klappen und Regler – Typ VR 10-VR 33

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

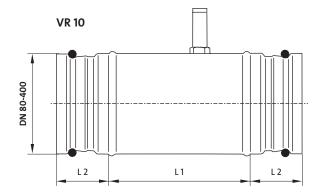
Schlitzluftdurchlässe

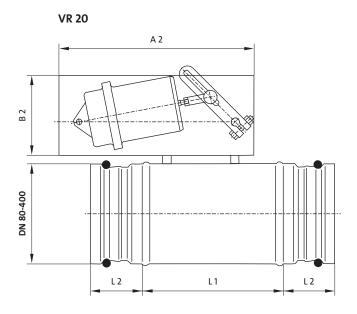
Rundrohrluftdurchlässe

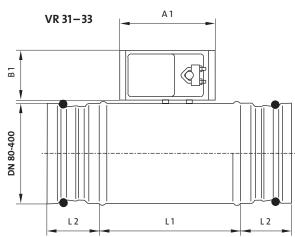
Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

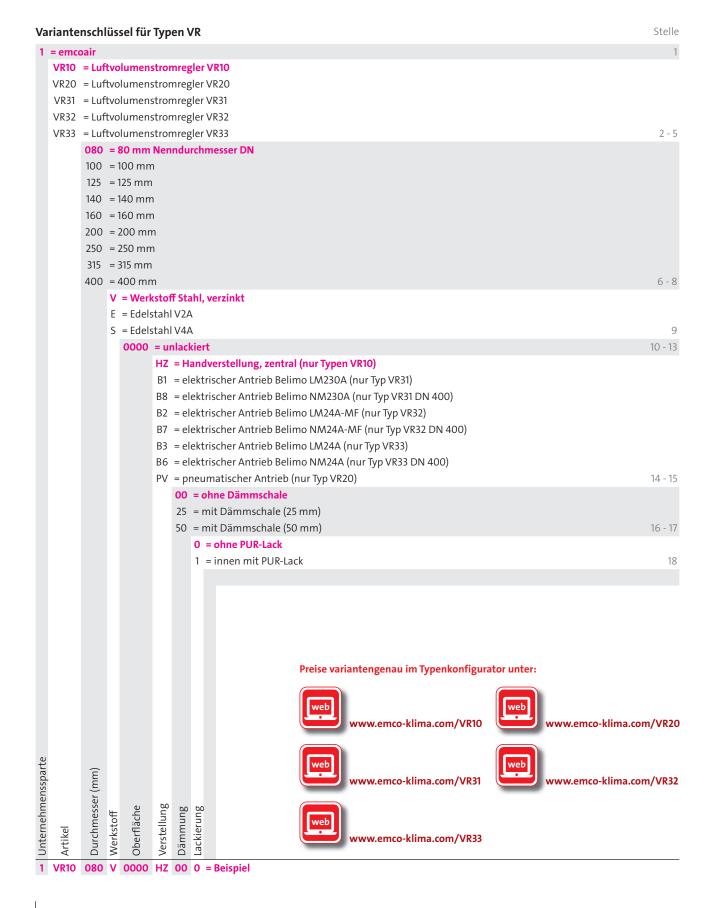

Kombiluftdurchlässe


durchlässe


Bodenluft-

Gitter

Klappen und Regler Typ VR 10–33



Abmessungen und Gewichte VR

Nenn- weite	wählbare Geschwindigkeit	möglicher Bereich	optimaler Bereich	max. stat. Druckdiff.			Ma	ıße			Gewichte		
DN	v [m/s]	√ [m³/h]	∨ [m³/h]	Δp _{st} [Pa]	L1 [mm]	L 2 [mm]	A1 [mm]	B 1 [mm]	A 2 [mm]	B 2 [mm]	VR 10 [kg]	VR 20 [kg]	VR 30 [kg]
80	2,7-6,0	40 - 125	50 - 108	1000	120	40	155	105	225	100	0,5	1,7	2,0
100	2,7-6,0	70 - 220	75 - 170	1000	170	40	155	105	225	100	0,6	1,8	2,1
125	2,7-6,0	100 - 280	120 - 265	1000	170	40	155	105	225	100	0,8	2,0	2,3
140	2,7-6,0	140 - 400	150 - 330	1000	170	40	155	105	225	100	1,0	2,2	2,5
160	2,7-6,0	180 - 500	200 - 430	1000	240	40	155	105	225	100	1,1	2,3	2,6
200	2,7-6,0	250 - 900	300 - 670	1000	240	40	155	105	225	100	1,8	3,0	3,3
250	2,7-6,0	500 - 1500	480 - 1050	1000	240	40	155	105	225	100	2,5	3,7	4,0
315*	2,7-6,0	800 - 3000	770 - 1900	1000	340	60	155	105	300	150	5,2	6,7	7,8
400*	2,7-6,0	1000 - 4500	1240 - 2850	1000	385	60	230	160	300	150	8,4	9,9	10,0

(*bei der Ausführung VR 10: NW 315 L 1=220 mm; NW 400 L 1=295 mm)

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluft-

Weitwurf-

Kombiluftdurchlässe

Bodenluftdurchlässe

Gitter

Klappen un Regler Typ EVR

emcoair Elektronischer Luftvolumenstromregler EVR

Der EVR ist ein runder Luftvolumenstromregler für variable Luftvolumenstromsysteme. Er ist sowohl im Zuluftals auch im Abluftstrang einsetzbar.

Einsatzbereiche

- In variablen Volumenstromsystemen (VVS)
- In Zuluft- oder Abluftleitungen
- Lageunabhängig in Rohrleitungssystemen
- Bei Temperaturen zwischen 0°C und 50°C

Kennzeichen

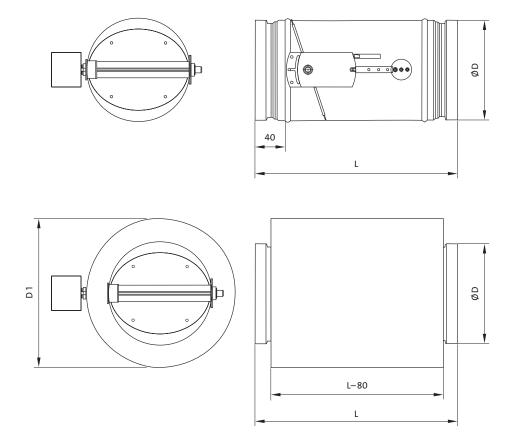
- Stabile Ausführung
- Hohe Ansprechempfindlichkeit
- Hohe Regelgenauigkeit (Abweichung bei Beachtung der Einbaubedingungen max. 10%)
- Wartungsfreie Stellklappenmechanik
- Differenzdruckbereich 5 600 Pa
- Unempfindlichkeit des Differenzdrucksensors gegen Verschmutzung

Konstruktiver Aufbau

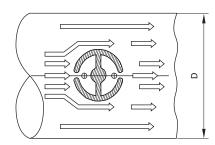
Der Rohrkörper besteht aus verzinktem Stahlblech, der als stumpf geschweißtes "Lasernaht"-Rohr ausgeführt wird. Dadurch entsteht eine glatte Oberfläche ohne Überlappungssprung. Die Gehäusestutzen

sind beidseitig passend für Rohre nach DIN 24145 bzw. DIN 24146 und standardmäßig mit einer Lippendichtung versehen. Die Stellklappe besteht aus verzinktem Stahlblech mit umlaufender Dichtung aus Gummi. Die Welle der Stellklappe ist in Gleitlagern aus Kunststoff gelagert.

Der Differenzdrucksensor besteht aus einem Aluminiumprofil und ist in Strömungsrichtung gesehen immer vor der Stellklappe angeordnet. Er ist so ausgebildet, dass über den Durchmesser des Rohres automatisch der Mittelwert des Differenzdruckes erfasst wird.


Die Regelkomponenten (Regler, Transmitter, Stellantrieb) sind Bestandteil der Luftvolumenstromregler und werden werkseitig montiert und angeschlossen.

Funktionsweise


Der Differenzdrucksensor ist so ausgebildet und im Rohrkörper angeordnet, dass auf der Anströmseite der Gesamtdruck der Strömung und auf der Abströmseite der statische Druck erfasst wird. Die Differenz zwischen diesen beiden Drücken (Wirkdruck) ist quadratisch von der Strömungsgeschwindigkeit im Rohr abhängig und damit bei bekanntem Querschnitt ein Maß für den Volumenstrom.

Über einen Differenzdruckfühler wird die Druckdifferenz aufgenommen und als Sensorsignal an die Regeleinheit weitergeleitet. Das Sensorsignal wird in der Regeleinheit in ein lineares Ist-Wert-Signal (Spannungssignal) umgeformt. Der Regler vergleicht den Ist-Wert mit dem über einen von 0-10 bzw. 2-10 Volt eingestellten Soll-Wert.

Bei einer Abweichung wird der Volumenstrom durch Verstellung der Regelklappe über dem Stellantrieb über den gesamten Differenzdruckbereich konstant gehalten. Je nach eingesetztem Reglertyp/ -fabrikat erfolgt die Differenzdruckbzw. Strömungsgeschwindigkeitsmessung statisch oder dynamisch: Bei der statischen Messung liegt die Druckdifferenz an einer Membran an, deren Verformung in ein Spanungssignal umgewandelt wird. Bei der dynamischen Messung strömt ein kleiner Luftstrom durch den Druckfühler. Dabei wird ähnlich wie bei einem thermischen Anemometer die Strömungsgeschwindigkeit gemessen und als elektrisches Signal weiterverarbeitet. Die Stellklappe ist in geschlossener Stellung luftdicht nach DIN EN 1751 Norm.

Messwerterfassung dargestellt im Schnitt (angeströmt)

Abmessungen und Gewichte

Nennweite		Maße		Gew	Gewichte			
DN	L [mm]	ØD [mm]	ØD1[mm]	Standard [kg]	mit Dämmung [kg]			
100	400	98	178	1,75	3,2			
125	400	123	223	2,1	3,7			
160	400	158	258	2,4	4,4			
200	400	198	298	2,9	5,3			
250	400	248	348	4,5	8,1			
315	600	313	413	7,1	11,4			
400	600	398	498	9,3	14,5			

emcoair Klappen und Regler - Typ EVR

Grundlagen und Systemvorteile

Drallluftdurchlässe

Stelle Variantenschlüssel für Typ EVR 1 = emcoair **OEVR** = Elektronischer Luftvolumenstromregler EVR 2 - 5 Deckenluftdurchlässe 100 = 100 mm Nenndurchmesser DN 125 = 125 mm160 = 160 mm 200 = 200 mmSchlitzluft-250 = 250 mmdurchlässe 315 = 315 mm 400 = 400 mmV = Werkstoff Stahl, verzinkt E = Edelstahl V2A Rundrohrluft-S = Edelstahl V4A durchlässe 0000 = unlackiert YYYY = Sonder 10 - 13 01 = elektrischer Volumenstromregler Belimo LMV-D3-MOD (dynamisch, Kompaktregler) 02 = elektrischer Volumenstromregler Belimo NMV-D3-MOD (dynamisch, Kompaktregler) Quellluftdurchlässe 04 = elektrischer Volumenstromregler Belimo LMV-D3-MP (dynamisch, Kompaktregler) 05 = elektrischer Volumenstromregler Belimo NMV-D3-MP (dynamisch, Kompaktregler) 07 = elektrischer Volumenstromregler Belimo LMV-D3-LON (dynamisch, Kompaktregler) 08 = elektrischer Volumenstromregler Belimo NMV-D3-LON (dynamisch, Kompaktregler) Industrieluft-YY = elektrischer Antrieb (Fabrikatsangabe) 14 - 15 durchlässe 00 = ohne Dämmschale 50 = mit Dämmschale (50 mm) 16 - 17 0 = Ansteuerung/Stellsignal 0-10V 2 = 2-10V18 Weitwurf-D = Messprinzip dynamisch (bei sauberer Luft) 19 0 = ohne PUR-Lack 1 = innen mit PUR-Lack 20 Kombiluftdurchlässe Bodenluftdurchlässe Gitter Regler/Drucktransmitter Ansteuerung/Stellsignal Messprinzip Unternehmenssparte Durchmesser (mm) Typ EVR Dämmung Oberfläche Lackierung Preise variantengenau Werkstoff im Typenkonfigurator unter Artikel www.emco-klima.com/EVR

100 V 0000 01 00 0 D 0 = Beispiel

emcoair Elektronischer Luftvolumenstromregler VRJS – Standard

Der VRJS ist ein elektronischer Volumenstromregler in quadradratischer oder rechteckiger Bauform. Der Regler wird zur Konstanthaltung oder stufenlosen Regelung mit Vollabsperrung von Luftvolumenströmen in RLT- Anlagen verwendet. Er ist sowohl im Zuluft- als auch im Abluftstrang einsetzbar.

Einsatzbereiche

- In variablen Volumenstromsystemen (VVS)
- In Zuluft- oder Abluftleitungen
- Lageunabhängig in Rohrleitungssystemen
- Bei Temperaturen zwischen 0 °C und 60 °C
- In der Aerosolausführung in der Küchenabluft
- Nach einem Abscheidersystem mit mindestens 90 95 % Abscheidegrad

Produktvorteile

- Stabile Ausführung
- Hohe Ansprechempfindlichkeit
- Hohe Regelgenauigkeit (Abweichung bei Beachtung der Einbaubedingungen max. 10%)

- Wartungsfreie Stellklappenmechanik
- Differenzdruckbereich 10-1000 Pa
- Unempfindlichkeit des Differenzdrucksensors gegen Verschmutzung

Konstruktiver Aufbau

Das Stellorgan in quadratischer oder rechteckiger Ausführung besteht aus einem Anströmteil mit Anschlussrahmen. An der Lufteintrittsseite ist die lageunabhängige Messwerterfassung mit integralem Staudruckverstärker (SDV) eingebaut. Das rohrförmige Aluminiumprofil mit einem Außendurchmesser von 32 mm wird quer zur Strömungsrichtung über den gesamten Rohrquerschnitt eingebaut. Die Druckaufnahme erfolgt über die kontinuierlich geöffnete Meßspalte über die gesamte Querschnittsfläche (Mittelwertbildung).

Die in Strömungsrichtung immer vor dem Regelorgan befindliche Messwerterfassung zur dynamischen Differenzdruckmessung besteht aus einem Sonderaluminiumprofil.

Die nachgeschaltete Regulierklappe ist wahlweise in luftdichter Ausführung (nach DIN 1946 Teil 4) inkl. der Klappenlagerung aus Kunststoff $T_{max} = 80$ °C lieferbar. Die elektronische Regelung für variable Volumenströme zur Aufschaltung externer Führungsgrößen wird mit einer Versorgungsspannung von 24 VAC betrieben. Die Steuerspannung ist von 2 bis 10 VDC bzw. 0 bis 10 VDC einstellbar. Wahlweise mit einem digitalen Regler inkl. integriertem Antrieb, P/PI Regelverhalten, auch geeignet für Zwangssteuerungen. Die Volumenstrommessung anhand des Istwertsignals ist auch im späteren Betrieb möglich. Das gilt auch für die Verstellung der werksseitig voreingestellten minimalen und maximalen Volumenströme. Die Regelkomponenten (Regler, Transmitter, Stellantrieb) sind Bestandteil der Luftvolumenregeleinheit und werden werkseitig montiert, eingestellt und angeschlossen.

emcoair Klappen und Regler - Typ VRJS/VRJA

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

Quellluftdurchlässe

Industrieluftdurchlässe

Weitwurfdüsen

Kombiluftdurchlässe

Bodenluftdurchlässe

Gitter

Klappen un Regler Typ VRJS /

Typ emcoair VRJA - AEROSOL

Beim emcoair VRJA-AEROSOL handelt es sich um einen elektronischen Volumenstromregler zur Konstanthaltung oder stufenlosen Regelung von aerosolhaltigen* (öl- und fetthaltige) Luftvolumenströmen in RLT-Anlagen (Raumlufttechnische Anlagen).

Konstruktiver Aufbau

Das Stellorgan besteht aus einem rechteckigen Anströmteil mit Verbindungsrahmen. An der Lufteintrittsseite ist die lageunabhängige Messwerterfassung mit integralem Staudruckverstärker (SDV) eingebaut.

Das rohrförmige Aluminiumprofil (Außen-Ø =32 mm) wird quer zur Strömungsrichtung über die gesamte Länge eingebaut. Die Druckaufnahme erfolgt über die kontinuierlich geöffnete Messspalte über die gesamte Querschnittsfläche.

Alle Komponenten sind werkseitig

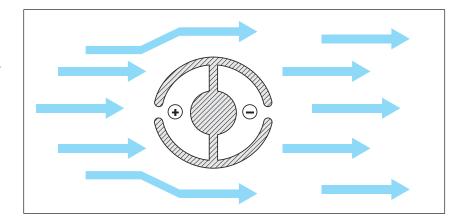
Alle Komponenten sind werkseitig komplett montiert und auf die Betriebsdaten voreingestellt. Die nachgeschaltete Regulierklappe ist kondensatdicht ausgeführt inkl. der öl- und fettbeständigen Klappenlagerung aus Teflon (T_{max} 120 °C). Rahmen und Klappenflügel bestehen aus verzinktem Stahlblech, das Klappengestänge liegt außen.

- 1. Kanalstück aus sendzimir verzinktem Stahlblech nach DIN 24190 Druckstufe 1; mit SBM-Verbindungsrahmen, Ecken und Seitenwand (verschweißt); Entdröhnung der Wand mittels Quersicken; Versteifung bis 1000 Pa; Dichtigkeitsklasse II nach DIN 24194
- 2. Regulierklappe, gegenläufig, mit doppelwandigen Klappenflügeln aus 0,63 mm verzinktem Blech, auf Klappenachsen befestigt; Rahmen besteht aus verzinktem Stahlblech, Verbindungsgestänge der Klappenhebel in Messingbuchsen gelagert

- 3. Regler Typ VRP
- Statischer Differenzdrucksensor Typ VFP
- 5. PVC-Schlauch
- 6. Integrale Messwerterfassung (SDV)
- 7. Klappengestänge
- 8. Stellantrieb

*Einbauvorschrift beachten!

Als Abluftregler, plaziert nach einem Aerosolabscheider mit einem Abscheidegrad von min. 90-95 %.


Funktionsweise VRJS/VRJA

Unter Volumenstromregelung versteht man im Allgemeinen die lastabhängige Anpassung des Luftvolumenstroms für bestimmte Räume, Raumbereiche oder Gebäudeabschnitte. Hierzu wird in der Regel ein Stellorgan mit einem Proportionalregler und einer Meßwerterfassung versehen. Die Funktionsweise ist dabei stark durch den Einsatzbereich des ausgewählten Stellorgans bestimmt.

Der Differenzdrucksensor der VRJK ist so ausgebildet und im Anströmteil angeordnet, dass auf der Anströmseite der Gesamtdruck der Strömung und auf der Abströmseite der statische Druck erfasst wird. Die Differenz zwischen diesen beiden Drücken (Wirkdruck) ist quadratisch von der Strömungsgeschwindigkeit im Rohr abhängig und damit bei bekanntem Querschnitt ein Maß für den Volumenstrom. Über einen Differenzdruckfühler wird die Druckdifferenz aufgenommen und als Sensorsignal an die Regeleinheit weitergeleitet. Das Sensorsignal wird in der Regeleinheit in ein lineares Ist-Wert-Signal (Spannungssignal) umgeformt. Der Regler vergleicht den Ist-Wert mit dem über einen Null bis 10 Volt eingestellten Sollwert. Bei einer Abweichung wird der Volumenstrom durch Verstellung der Regelklappe durch den Stellantrieb über den gesamten Differenzdruckbereich konstant gehalten. Je nach eingesetztem Reglertyp/ -fabrikat erfolgt die Differenzdruckbzw. Strömungsgeschwindigkeitsmessung statisch oder dynamisch. Bei der statischen Messung liegt die Druckdifferenz an einer Membran an, deren Verformung in ein Spanungssignal umgewandelt wird. Bei der dynamischen Messung strömt ein kleiner Luftstrom durch den Druckfühler. Dabei wird ähnlich wie bei einem thermischen Anemometer die Strömungsgeschwindigkeit gemessen und als elektrisches Signal weiterverarbeitet. Die Stellklappe ist in der geschlossenen Stellung luftdicht nach DIN Norm.

Einbauhinweise

Die Einbauposition der VRJS / VRJA ist von entscheidender Bedeutung für die Messgenauigkeit des SDV-Profiles. Die Aufgabe der Messwerterfassung (SDV-Staudruckverstärker) ist die möglichst genaue Erfassung der mittleren Luftgeschwindigkeit. Dabei besitzt er so gut wie keinen Eigenwiderstand, der zu höheren Druckverlusten und dem zufolge höheren Betriebskosten führt.

emcoair Klappen und Regler – Typ VRJS/VRJA

Grundlagen und Systemvorteile

Drallluftdurchlässe

Deckenluftdurchlässe

Schlitzluftdurchlässe

Rundrohrluftdurchlässe

durchlässe

Industrieluftdurchlässe

Quellluft-

Kombiluftdurchlässe

Weitwurfdüsen

Bodenluftdurchlässe

Gitter

Klappen un Regler Typ VRJS /

Legende:

Baubreite = Lamellenlänge

Reglertypen

- 1 Belimo LMV-D3 MP
- 2 Belimo NMV-D3 MP
- 3 Belimo SMV-D3 MP Festlegung bei einem Drehmoment für 1000 Pa

SDV-Sonde Typen

- E Einfachanschluss
- D Doppelanschluss ab einer Breite von 800 mm kommen 2 Sonden zum Einsatz

Technische Daten (Schnellauswahl) – Abmessungen · Baugröße · Volumenstrombereiche

recimisenc	Daten (Seini	Chaaswani	– Admessu	iigeii · baug	sioise · voic	illelistioili	Deference			
Bauhöhe (lichtes	Baubreite (lichtes	Baulänge	Lamellen- tiefe		Luftgesc	hwindigkeit	t v [m/s]			
Innenmaß)	Innenmaß)		tiere	2	4	6	8	10	Regler	SDV-Sonde
H [mm]	B [mm]	L[mm]	[mm]		Luftvolu	menstrom V	$\frac{1}{100}$ [m ³ /h]		Тур	Тур
200	200			288	576	864	1152	1440	1	Е
200	300	350		432	864	1296	1728	2160	1	E
200	400			576	1152	1728	2304	2880	2	Е
200	500			720	1440	2160	2880	3600	2	Е
200	600		400	864	1728	2592	3456	4320	2	Е
200	700		100	1008	2016	3024	4032	5040	3	E
200	800			1152	2304	3456	4608	5760	3	D
200	900			1296	2592	3888	5184	6480	3	D
200	1000			1440	2880	4320	5760	7200	3	D
200	1200			1728	3456	5184	6912	8640	3	D
300	200			432	864	1296	1728	2160	1	Е
300	300			648	1296	1944	2592	3240	1	E
300	400			864	1728	2592	3456	4320	2	Е
300	500			1080	2160	3240	4320	5400	2	Е
300	600	350	400	1296	2592	3888	5184	6480	2	Е
300	700		100	1512	3024	4536	6048	7560	3	Е
300	800			1728	3456	5184	6912	8640	3	D
300	900			1944	3888	5832	7776	9720	3	D
300	1000			2160	4320	6480	8640	10800	3	D
300	1200			2592	5184	7776	10368	12960	3	D

 $\textbf{Technische Daten (Schnellauswahl)} - \textbf{Abmessungen} \cdot \textbf{Baugr\"{o}} \\ \textbf{ße} \cdot \textbf{Volumenstrombereiche}$

Bauhöhe (lichtes	Baubreite (lichtes	Baulänge	Lamellen-		Luftgesc	hwindigkei	t v [m/s]			
Innenmaß)		e e	tiefe	2	4	6	8	10	Regler	SDV-Sonde
H [mm]	B [mm]	L[mm]	[mm]		Luftvolui	menstrom \	$V_0 [m^3/h]$		Тур	Тур
400	200			576	1152	1728	2304	2880	1	Е
400	300			864	1728	2592	3456	4320	1	Е
400	400			1152	2304	3456	4608	5760	2	Е
400	500			1440	2880	4320	5760	7200	2	Е
400	600	350	100	1728	3456	5184	6912	8640	2	Е
400	700	330	100	2016	4032	6048	8064	10080	3	Е
400	800			2304	4608	6912	9216	11520	3	D
400	900			2592	5184	7776	10368	12960	3	D
400	1000			2880	5760	8640	11520	14400	3	D
400	1200			3456	6912	10368	13824	17280	3	D
500	200			720	1440	2160	2880	3600	1	Е
500	300			1080	2160	3240	4320	5400	1	Е
500	400			1440	2880	4320	5760	7200	2	Е
500	500			1800	3600	5400	7200	9000	2	Е
500	600	350	100	2160	4320	6480	8640	10800	2	Е
500	700	330	100	2520	5040	7560	10080	12600	3	Е
500	800			2880	5760	8640	11520	14400	3	D
500	900			3240	6480	9720	12960	16200	3	D
500	1000			3600	7200	10800	14400	18000	3	D
500	1200			4320	8640	12960	17280	21600	3	D
600	200			864	1728	2592	3456	4320	1	Е
600	300			1296	2592	3888	5184	6480	1	Е
600	400			1728	3456	5184	6912	8640	2	Е
600	500			2160	4320	6480	8640	10800	2	Е
600	600	350	100	2592	5184	7776	10368	12960	2	Е
600	700	330	100	3024	6048	9072	12096	15120	3	Е
600	800			3456	6912	10368	13824	17280	3	D
600	900			3888	7776	11664	15552	19440	3	D
600	1000			4320	8640	12960	17280	21600	3	D
600	1200			5184	10368	15552	20736	25920	3	D
700	200			1008	2016	3024	4032	5040	1	Е
700	300			1512	3024	4536	6048	7560	1	Е
700	400			2016	4032	6048	8064	10080	2	Е
700	500			2520	5040	7560	10080	12600	2	Е
700	600	350	100	3024	6048	9072	12096	15120	2	Е
700	700	550	100	3528	7056	10584	14112	17640	3	Е
700	800			4032	8064	12096	16128	20160	3	D
700	900			4536	9072	13608	18144	22680	3	D
700	1000			5040	10080	15120	20160	25200	3	D
700	1200			6048	12096	18144	24192	30240	3	D

Drallluftdurchlässe

$\textbf{Technische Daten (Schnellauswahl)} - \textbf{Abmessungen} \cdot \textbf{Baugr\"{o}\&e} \cdot \textbf{Volumenstrombereiche}$

Bauhöhe (lichtes	Baubreite (lichtes	Baulänge	Lamellen-		Luftgesc	chwindigkei	t v [m/s]				Deckenluft-										
Innenmaß)	Innenmaß)	Dadiange	tiefe	2	4	6	8	10	Regler	SDV-Sonde	durchlässe										
H [mm]	B [mm]	L[mm]	[mm]		Luftvolu	menstrom \	/ ₀ [m³/h]		Тур	Тур											
800	200			1152	2304	3456	4608	5760	1	Е											
800	300			1728	3456	5184	6912	8640	1	Е	Schlitzluft-										
800	400			2304	4608	6912	9216	11520	2	Е	durchlässe										
800	500			2880	5760	8640	11520	14400	2	Е											
800	600	250	100	3456	6912	10368	13824	17280	2	Е											
800	700	350	100	4032	8064	12096	16128	20160	3	Е	Rundrohrluft-										
800	800			4608	9216	13824	18432	23040	3	D	durchlässe										
800	900			5184	10368	15552	20736	25920	3	D											
800	1000			5760	11520	17280	23040	28800	3	D											
800	1200			6912	13824	20736	27648	34560	3	D	Quellluft-										
900	200			1296	2592	3888	5184	6480	1	Е	durchlässe										
900	300				1944	3888	5832	7776	9720	1	Е										
900	400			2592	5184	7776	10368	12960	2	Е											
900	500			3240	6480	9720	12960	16200	2	Е	Industrieluft-										
900	600	250	350	250	250	350	250	250	250	350	350	250	100	3888	7776	11664	15552	19440	2	Е	durchlässe
900	700	350	100	100	100	100	100	100	4536	9072	13608	18144	22680	3	Е						
900	800			5184	10368	15552	20736	25920	3	D											
900	900			5832	11664	17496	23328	29160	3	D	Weitwurf-										
900	1000									6480	12960	19440	25920	32400	3	D	düsen				
900	1200			7128	14256	21384	28512	35640	3	D											
1000	200			1440	2880	4320	5760	7200	1	Е											
1000	300			2160	4320	6480	8640	10800	2	Е	Kombiluft-										
1000	400	350	100	2880	5760	8640	11520	14400	2	Е	durchlässe										
1000	500	330		3600	7200	10800	14400	18000	3	Е											
1000	600			4320	8640	12960	17280	21600	3	Е											
1100	200			1584	3168	4752	6336	7920	1	Е	Bodenluft-										
1100	300	250	100	2376	4752	7128	9504	11880	2	Е	durchlässe										
1100	400	350	100	3168	6336	9504	12672	15840	2	Е											
1100	500			3960	7920	11880	15840	19800	3	Е											

Gitter

Clappen und Regler Typ VRJS / /RJA

 $\textbf{Technische Daten (Schnellauswahl)} - \textbf{Abmessungen} \cdot \textbf{Baugr\"{o}} \\ \textbf{ße} \cdot \textbf{Volumenstrombereiche}$

Bauhöhe	Baubreite	,	Lamellen-	gen baa		hwindigkei	t v [m/s]			
(lichtes Innenmaß)	(lichtes Innenmaß)	Baulänge	tiefe	2	4	6	8	10		
H [mm]	B [mm]	L [mm]	[mm]	2		menstrom \		10	Regler Typ	SDV-Sonde Typ
510	400	2 []	[]	1469	2938	4406	5875	7344	1	E
675	400			1944	3888	5832	7776	9720	2	E
840	400			2419	4838	7258	9677	12096	2	E
1005	400			2894	5789	8683	11578	14472	2	E
1170	400	350	165	3370	6739	10109	13478	16848	3	Е
1335	400			3845	7690	11534	15379	19224	3	Е
1500	400			4320	8640	12960	17280	21600	3	Е
1665	400			4795	9590	14386	19181	23976	3	Е
345	500			1242	2484	3726	4968	6210	1	Е
510	500			1836	3672	5508	7344	9180	2	Е
675	500			2430	4860	7290	9720	12150	2	Е
840	500	250	165	3024	6048	9072	12096	15120	2	Е
1005	500	350	165	3618	7236	10854	14472	18090	3	Е
1170	500			4212	8424	12636	16848	21060	3	Е
1335	500			4806	9612	14418	19224	24030	3	Е
1500	500			5400	10800	16200	21600	27000	3	Е
345	600			1490	2981	4471	5962	7452	2	Е
510	600			2203	4406	6610	8813	11016	2	Е
675	600			2916	5832	8748	11664	14580	2	Е
840	600	350	165	3629	7258	10886	14515	18144	2	Е
1005	600	550		4342	8683	13025	17366	21708	3	Е
1170	600			5054	10109	15163	20218	25272	3	Е
1335	600			5767	11534	17302	23069	28836	3	Е
1500	600			6480	12960	19440	25920	32400	3	Е
345	700			1739	3478	5216	6955	8694	2	Е
510	700			2570	5141	7711	10282	12852	2	Е
675	700			3402	6804	10206	13608	17010	2	Е
840	700	350	165	4234	8467	12701	16934	21168	2	E
1005	700			5065	10130	15196	20261	25326	3	Е
1170	700			5897	11794	17690	23587	29484	3	Е
1335	700			6728	13457	20185	26914	33642	3	E
345	800			1987	3974	5962	7949	9936	2	D
510	800			2938	5875	8813	11750	14688	2	D
675	800			3888	7776	11664	15552	19440	3	D
840	800	350	165	4838	9677	14515	19354	24192	3	D
1005	800			5789	11578	17366	23155	28944	3	D
1170	800			6739	13478	20218	26957	33696	3	D
1335	800			7690	15379	23069	30758	38448	3	D

Drallluftdurchlässe

$\textbf{Technische Daten (Schnellauswahl)} - \textbf{Abmessungen} \cdot \textbf{Baugr\"{o}} \\ \textbf{ße} \cdot \textbf{Volumenstrombereiche}$

Bauhöhe (lichtes	Baubreite (lichtes	Baulänge	Lamellen-		Luftgesc	hwindigkei	t v [m/s]				Deckenluft-												
Innenmaß)	,		tiefe	2	4	6	8	10	Regler	SDV-Sonde	durchlässe												
H [mm]	B [mm]	L[mm]	[mm]		Luftvolu	menstrom \	Тур	Тур															
345	900			2236	4471	6707	8942	11178	2	D													
510	900			3305	6610	9914	13219	16524	2	D	Schlitzluft-												
675	900	350	165	4374	8748	13122	17496	21870	3	D	durchlässe												
840	900	350	165	5443	10886	16330	21773	27216	3	D													
1005	900			6512	13025	19537	26050	32562	3	D													
1170	900			7582	15163	22745	30326	37908	3	D	Rundrohrluft-												
345	1000			2484	4968	7452	9936	12420	2	D	durchlässe												
510	1000			3672	7344	11016	14688	18360	2	D													
675	1000	250	165	4860	9720	14580	19440	24300	3	D													
840	1000	350	550	330	0.00	330	330	330	330	350	330	330	330	350	100	6048	12096	18144	24192	30240	3	D	Quellluft-
1005	1000					7236	14472	21708	28944	36180	3	D	durchlässe										
1170	1000						8424	16848	25272	33696	42120	3	D										
345	1200			2981	5962	8942	11923	14904	2	D													
510	1200			4406	8813	13219	17626	22032	2	D	Industrieluft-												
675	1200	350	350	350	350	165	5832	11664	17496	23328	29160	3	D	durchlässe									
840	1200			7258	14515	21773	29030	36288	3	D													
1005	1200			8683	17366	26050	34733	43416	3	D													
345	1400			3478	6955	10433	13910	17388	2	D	Weitwurf-												
510	1400	250	165	5141	10282	15422	20563	25704	3	D	düsen												
675	1400	350	105	6804	13608	20412	27216	34020	3	D													
840	1400			8467	16934	25402	33869	42336	3	D													
345	1600			3974	7949	11923	15898	19872	2	D	16 le the 64												
510	1600	350	165	5875	11750	17626	23501	29376	3	D	Kombiluft- durchlässe												
675	1600	350	165	7776	15552	23328	31104	38880	3	D													
840	1600			9677	19354	29030	38707	48384	3	D													

Bodenluftdurchlässe

Gitter

Klappen und Regler Typ VRJS / VRJA

Variantenschlüssel für Typ VRJS/VRJA 1 = emcoair VRJS = emcoair Elektronischer Volumenstromregler Typ VRJK-Standard VRJA = emcoair Elektronischer Volumenstromregler Typ VRJK-AEROSOL (Messprinzip nur statisch) 2 - 5 0200 mm = Bauhöhe (Lamellenhöhe 100 mm) 0300 mm (Lamellenhöhe 100 mm) 0345 mm (Lamellenhöhe 165 mm) 0400 mm (Lamellenhöhe 100 mm) 0500 mm (Lamellenhöhe 100 mm) 0510 mm (Lamellenhöhe 165 mm) 0600 mm (Lamellenhöhe 100 mm) 0675 mm (Lamellenhöhe 165 mm) 0700 mm (Lamellenhöhe 100 mm) 0800 mm (Lamellenhöhe 100 mm) 0840 mm (Lamellenhöhe 165 mm) 0900 mm (Lamellenhöhe 100 mm) 1000 mm (Lamellenhöhe 100 mm) 1005 mm (Lamellenhöhe 165 mm) 1100 mm (Lamellenhöhe 100 mm) 1170 mm (Lamellenhöhe 165 mm) 1335 mm (Lamellenhöhe 165 mm) 1500 mm (Lamellenhöhe 165 mm) 1665 mm (Lamellenhöhe 165 mm) XXXX andere (bitte Maß angeben) 0200 mm = Baubreite 0300 mm 0400 mm 0500 mm 0600 mm 0700 mm 0800 mm 0900 mm 1000 mm 1100 mm 1200 mm 1400 mm 1600 mm XXXX andere (bitte Maß angeben) 10 - 13 V = Werkstoff Stahl, sendzimir verzinkt (für Gehäuse und Stellklappe) E = Edelstahl V2A, nur bei VRJA S = Edelstahl V4A, nur bei VRJA 14 0000 = Oberfläche unlackiert, d.h. verzinkt YYYY = Sonderbeschichtung/-lackierung UNBE = Edelstahl, unbehandelt 15 - 18 01 = Regler Belimo LMV-D3 MOD (dynamisch, Kompaktregler) 02 = Belimo NMV-D3 MOD (dynamisch, Kompaktregler) 04 = Belimo LMV-D3 MP (dynamisch, Kompaktregler) 05 = Belimo NMV-D3 MP (dynamisch, Kompaktregler) 06 = Belimo SMV-D3 MP (dynamisch, Kompaktregler) 19 - 20

Stelle

emcoair Klappen und Regler – Typ VRJS/VRJA

Grundlagen und Systemvorteile

Drallluftdurchlässe

09 = Belimo VRD3 (dynamisch, mit Belimo Stellantrieb zu kombinieren) 10 = Belimo VRP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Belimo VRP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Sensor Belimo VFP-100 (statisch) 3 = Sensor Belimo VFP-000 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 BB = Belimo LM24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 22 - 23 00 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751)	Deckenluft- durchlässe Schlitzluft- durchlässe
09 = Belimo VRD3 (dynamisch, mit Belimo Stellantrieb zu kombinieren) 10 = Belimo VRP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Belimo VRP-STP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Sensor Belimo VFP-100 (statisch) 3 = Sensor Belimo VFP-000 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 - Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 88 = Belimo LMZAA-V (für Belimo-Regler VRP und VRD3) BC = Belimo NMZAA-V (für Belimo-Regler VRP und VRD3) BC = Belimo SF2AA-V (für Belimo-Regler VRP und VRD3) BC = Belimo SM2AA-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) 8c Preise variantengenau	durchlässe Schlitzluft-
10 = Belimo VRP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Belimo VRP-STP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Sensor Belimo VFP-100 (statisch) 3 = Sensor Belimo VFP-300 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor in Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 BB = Belimo LM24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo NM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 01 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt 3 = Teflonlager, gekapselt für hohe Druckdifferenzen (nur bei VRIS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRIA) M = Messinglager (nur bei VRIS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRIS) 1 = Gestänge, außen liegend 2 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Be	
11 = Belimo VRP-STP (statisch, mit Belimo Stellantrieb zu kombinieren) 11 = Sensor Belimo VFP-100 (statisch) 3 = Sensor Belimo VFP-600 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor Belimo VFP-600 (statisch) 0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 8B = Belimo LMZ4A-V (für Belimo-Regler VRP und VRD3) BC = Belimo NMZ4A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 2 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Be Preise variantengenau	
1 = Sensor Belimo VFP-100 (statisch) 3 = Sensor Belimo VFP-300 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 BB = Belimo LM2AA-V (für Belimo-Regler VRP und VRD3) BC = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SP24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Cestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751)	
3 = Sensor Belimo VFP-300 (statisch) 6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) 21 BB = Belimo LM24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenalgerung aus Polyamid, wartungsfrei (nur bei VRIS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRIS) T = Teflonlager, beständig gegen Desińfektionsmittel (bei VRIA) M = Messinglager (nur bei VRIS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRIS) 1 = Cestsänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bed Preise variantengenau	
6 = Sensor Belimo VFP-600 (statisch) 0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) BB = Belimo LW24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdfiferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Be	durchlasse
0 = Sensor im Regler/Drucktransmitter enthalten (bei allen Kompaktreglern) BB = Belimo LM24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo NM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 du 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Cestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751)	
BB = Belimo LM24A-V (für Belimo-Regler VRP und VRD3) BC = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) O0 = Stellantrieb im Regler/Drucktransmitter enthalten O0 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle O = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRIS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRIS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenatrrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Better die VRDA (die verben verb	
BC = Belimo NM24A-V (für Belimo-Regler VRP und VRD3) BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt 26 P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedüt	
BD = Belimo SF24A-V (für Belimo-Regler VRP und VRD3) BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) OO = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 OO = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 O = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 27 O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) 29	Rundrohrluft-
BE = Belimo SM24A-V (für Belimo-Regler VRP und VRD3) 00 = Stellantrieb im Regler/Drucktransmitter enthalten 22 - 23 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt 2 = 2 - 10 Volt K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJA) M = Messinglager (nur bei VRJS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedüt	durchlässe
00 = Stellantrieb im Regler/Drucktransmitter enthalten 00 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt 2 = 2 - 10 Volt F = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) 29 Preise variantengenau	
O0 = ohne Dämmschale 40 = mit Dämmschale aus 40 mm Mineralwolle 24 - 25 O = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedit	
40 = mit Dämmschale aus 40 mm Mineralwolle 0 = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) 0 = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedut	
O = Ansteuerung/Stellsignal 0-10 Volt 2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedit	Quellluft- durchlässe
2 = 2 - 10 Volt P = Lamellenlagerung aus Polyamid, wartungsfrei (nur bei VRJS) K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bediu	
K = Kugellager, gekapselt für hohe Druckdifferenzen (nur bei VRJS) T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedium	
T = Teflonlager, beständig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau Bedit	
T = leflonlager, bestandig gegen Desinfektionsmittel (bei VRJA) M = Messinglager (nur bei VRJS wählbar) O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Rodu Preise variantengenau	Industrieluft-
O = Lamellenantrieb, innen liegend (nur bei VRJS) 1 = Gestänge, außen liegend 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Preise variantengenau	durchlässe
1 = Gestänge, außen liegend 28 1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) 29 Rodu Preise variantengenau	
1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Road	
1 = Klasse 1 2 = Klasse 2 4 = Klasse 4 (nach prEN 1751) Kodu	Weitwurf-
4 = Klasse 4 (nach prEN 1751) Kodu Preise variantengenau	düsen
Ro du Preise variantengenau	
Bo Preise variantengenau	
Bo Preise variantengenau	
Bo Preise variantengenau	Kombiluft- durchlässe
Preise variantengenau du	
Preise variantengenau du	
Preise variantengenau du	
Ficise variantengenau	Bodenluft-
ım iypenkoniigurator unter:	durchlässe
The state of the s	
at in the second of the second	
www.emco-klima.com/VRJS Gi	Gitter
Mwww.emco-klima.com/VRJS Artikel Artikel Artikel Artikel Bauhöhe in mm Oberfläche Oberfläche Camellenlagerung Lamellenatrieb Dichtheitsklasse Dichtheitsklasse Open Ansteuerung Dichtheitsklasse NAN/WONSTAND Mannen Mannen	
Unternehmer Artikel Bauhöhe in m Baubreite in r Werkstoff Oberfläche Sensor Stellantrieb Dämmung Ansteuerung Lamellenlage Lamellenlage Lamellenlage Lamellenlage Lamellenlage Ansteuerung	
Unternal Unternal Artikel Bauhöf Bauhöf Baubre Werkst, Oberflä Lamelle Lamelle Dichthe	
T.	Regler Typ VRJS /
1 VRJS 0200 0200 V 0000 01 1 BB 00 0 P 0 1 = Beispiel	VRJA

Übersicht und Zuordnung der wählbaren Regler, Sensoren und Antriebe

Regler	Sensor	Antrieb			
Belimo LMV-D3 MOD	enthalten	enthalten			
Belimo NMV-D3 MOD	enthalten	enthalten			
Belimo LMV-D3 MP	enthalten	enthalten			
Belimo NMV-D3 MP	enthalten	enthalten			
Belimo SMV-D3 MP	enthalten	enthalten			
Belimo LMV-D3 LON	enthalten	enthalten			
Belimo NMV-D3 LON	enthalten	enthalten			
		Belimo LM 24 A-V			
Belimo VRD3	enthalten	Belimo NM 24 A-V			
Bellino VRD3	enthalten	Belimo SF 24 A-V			
		Belimo SM 24 A-V			
	Belimo VFP - 100	Belimo LM 24 A-V			
Belimo VRP	Belimo VFP - 300	Belimo NM 24 A-V			
Bellmo VKP	Belimo VFP - 600	Belimo SF 24 A-V			
		Belimo SM 24 A-V			
	Belimo VFP - 100	Belimo LM 24 A-V			
Polima VPD CTD	Belimo VFP - 300	Belimo NM 24 A-V			
Belimo VRP - STP	Belimo VFP - 600	Belimo SF 24 A-V			
		Belimo SM 24 A-V			

Drallluftdurchlässe

düsen

Kombiluftdurchlässe

Bodenluftdurchlässe

Gitter

Zuordnung der einzusetzenden Antriebe in Abhängigkeit der Höhe und Breite der Jalousieklappe Breiten 200 bis 700 mm

20	200 .00 LM/LMV	300	400				
21	100		400	500	600	700	durchlässe
21	.00 LM/LMV	LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SF	
30	M/LMV	LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SF	
3	345			LM/LMV	NM/NMV	NM/NMV	Schlitzluft-
40	-00 LM/LMV	LM/LMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	durchlässe
50	600 LM/LMV	LM/LMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	
5	510		NM/NMV	NM/NMV	NM/NMV	NM/NMV	
60	600 LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	Rundrohrluft-
6	675		NM/NMV	NM/NMV	NM/NMV	NM/NMV	durchlässe
70	00 LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	
Höhe (mm)	SOO LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	
(11111)			NM/NMV	NM/NMV	NM/NMV	NM/NMV	Quellluft-
90	00 LM/LMV	NM/NMV	NM/NMV	NM/NMV	SM/SMV/SF	SM/SF	durchlässe
100	000 LM/LMV	NM/NMV	NM/NMV	SM/SF	SM/SF		
10	005		NM/NMV	SM/SF	SM/SF	SM/SF	
110	IOO LM/LMV	NM/NMV	NM/NMV	SM/SF			Industrieluft-
11	170		SM/SF	SM/SF	SM/SF	SM/SF	durchlässe
13	335		SM/SF	SM/SF	SM/SF	SM/SF	
150			SM/SF	SM/SF	SM/SF		
16	565		SM/SF				Weitwurf-

Breiten 800 bis 1600 mm

				Breite	(mm)		
		800	900	1000	1200	1400	1600
	200	SM/SF	SM/SF	SM/SF	SM/SF		
	300	SM/SF	SM/SF	SM/SF	SM/SF		
	345	NM/NMV	NM/NMV	NM/NMV	NM/NMV	NM/NMV	NM/NMV
	400	SM/SF	SM/SF	SM/SF	SM/SF		
	500	SM/SF	SM/SF	SM/SF	SM/SF		
	510	NM/NMV	NM/NMV	NM/NMV	NM/NMV	SM/SF	SM/SF
	600	SM/SF	SM/SF	SM/SF	SM/SF		
	675	SM/SF	SM/SF	SM/SF	SM/SF	SM/SF	SM/SF
وطقالا	700	SM/SF	SM/SF	SM/SF	SM/SF		
Höhe (mm)	800	SM/SF	SM/SF	SM/SF	SM/SF		
(111111)	840	SM/SF	SM/SF	SM/SF	SM/SF	SM/SF	SM/SF
	900	SM/SF	SM/SF	SM/SF	SM/SF		
	1000						
	1005	SM/SF	SM/SF	SM/SF	SM/SF		
	1100						
	1170	SM/SF	SM/SF	SM/SF			
	1335	SM/SF					
	1500						
	1665						

1. Geltungsbereich

Alle Lieferungen, Leistungen und Angebote von emco Klima erfolgen ausschließlich aufgrund der Allgemeinen Geschäftsbedingungen von emco Klima. Diese sind auch Bestandteil aller Verträge, die emco Klima mit dem Besteller schließt. Geschäftsbedingungen des Bestellers oder Dritter finden keine Anwendung, auch wenn emco Klima ihrer Geltung im Einzelfall nicht widerspricht.

2. Angebot und Vertragsschluss

Angebote von uns sind freibleibend. Mündliche Nebenabreden sind nur dann bindend, wenn sie schriftlich bestätigt werden. An Bestellungen ist der Besteller zwei Wochen gebunden. Der Vertrag kommt erst dann zustande, wenn emco Klima die Bestellung durch Auftragsbestätigung oder Lieferung innerhalb dieser Zeit annimmt.

3. Preise und Zahlung

- 3.1 Die von uns genannten Preise sind Nettopreise. Ihnen hinzuzusetzen ist die zum Zeitpunkt der Lieferung geltende gesetzliche Umsatzsteuer, ferner, wenn die Ware an den vom Besteller genannten Leistungsort verschickt werden sollen, die Fracht-, Verpackungsund Versandkosten. Bei Dauerlieferungs-, Abruf- oder Sukzessivlieferungsverträgen kommen die am Tage der Lieferung geltenden Verkaufspreise zur Anwendung zuzüglich der oben weiter genannten Nebenkosten wie Umsatzsteuer, Fracht-, Verpackungs- und Versandkosten. Erfolgen Lieferungen aus vom Besteller zu vertretenden Gründen nach dem ursprünglich vorgesehenen Termin und erhöhen sich ab diesem Zeitpunkt die Lohn- und Materialkosten oder die Preise von Vorlieferern, sind wir berechtigt, die Preise prozentual entsprechend zu erhöhen. Bestätigte Preise gelten nur für den jeweiligen Auftrag und sind für Nachbestellungen nicht verbindlich.
- 3.2 Der Rechnungsbetrag ist sofort nach Liefereingang fällig, spätestens ohne Abzug binnen 10 Tagen nach Rechnungsdatum. Maßgeblich für die Rechtzeitigkeit der Zahlung ist der Zahlungseingang bei uns. Eventuell vereinbarte Skonti sind hinfällig, wenn sich der Besteller bei der Bezahlung früherer Lieferungen in Verzug befindet. Im Falle des Zahlungsverzugs berechnen wir Zinsen in Höhe von 9 Prozentpunkten über dem jeweiligen Basiszinssatz. Die Geltendmachung eines höheren Schadens bleibt vorbehalten. Bei Zahlungsverzug mit einer Entgeltforderung haben wir einen Anspruch auf eine Pauschale in Höhe von 40,00 €, die auf einen geschuldeten Schadenersatz anzurechnen ist, soweit der Schaden in Kosten der Rechtsverfolgung begründet ist. Bei Zahlungsverzug von Rechnungsbeträgen aus vorangegangenen Lieferungen ist der Rechnungsbetrag mit Lieferungseingang sofort zur Zahlung fällig. Gleiches gilt, wenn der Besteller einen Insolvenzantrag gestellt hat.
- 3.3 Der Besteller kann mit Gegenansprüchen nur aufrechnen, sofern die Gegenansprüche rechtskräftig festgestellt oder unbestritten sind. Ein Zurückbehaltungsrecht entsprechend den gesetzlichen Bestimmungen ist von diesem Verbot ausgenommen.

4. Lieferung/Gefahrübergang

- **4.1** Lieferungen erfolgen grundsätzlich ab Werk emco Klima.
- 4.2 Von emco Klima in Aussicht gestellte Lieferfristen/ Liefertermine gelten stets nur annähernd, es sei denn, sie sind ausdrücklich als feste Termine schriftlich vereinbart.
- **4.3** Sofern eine Versendung durch emco Klima vereinbart wurde, beziehen sich die Lieferfristen/Liefertermine auf den Zeitpunkt der Übergabe an den Frachtführer. Die Gefahr geht mit Übergabe der Kaufsache an den Frachtführer auf den Besteller über. Es gelten nicht die Incoterms.
- 4.4 emco Klima ist zur Teillieferung nur berechtigt, soweit dies dem Besteller zumutbar ist. Dies soll der Fall sein, wenn die Teillieferung für den Besteller im Rahmen des vertraglichen Bestimmungszwecks verwendbar ist, die Lieferung der restlichen Ware sichergestellt ist und dem Besteller hierdurch kein erheblicher Mehraufwand oder zusätzliche Kosten entstehen, es sei denn, emco Klima erklärt sich zur Übernahme dieser Kosten bereit.

- **4.5** emco Klima haftet für Unmöglichkeit der Lieferung oder Lieferverzögerungen nur, soweit sie von emco Klima zu vertreten sind. Dies ist nicht der Fall bei höherer Gewalt oder sonstige nicht vorhersehbare Freiznisse.
- 4.6 emco Klima kann die Lieferung solange in den Fällen verweigern, in denen nach Vertragsabschluss erkennbar wird, dass der Anspruch auf die Gegenleistung durch mangelnde Leistungsfähigkeit des Bestellers gefährdet wird, es sei denn, der Besteller leistet Sicherheit innerhalb einer von emco Klima gesetzten angemessenen Frist, nach deren Ablauf emco Klima vom Vertrag zurücktreten kann.
- 4.7 Bei Lieferungsverzögerungen kann der Besteller im Rahmen der gesetzlichen Bestimmungen vom Vertrag zurücktreten, wenn die Verzögerung von emco Klima zu vertreten ist und emco Klima eine schriftliche Nachfrist von mindestens 14 Tagen gesetzt wurde (§ 314 Abs. 2 BGB). Eine Änderung der Beweislast zum Nachteil des Bestellers ist hiermit nicht verbunden. Die Haftung von emco Klima bei Nichtlieferung oder Lieferverzögerung bestimmt sich nach Ziffer 6.6.
- 4.8 Gekaufte und von emco Klima gelieferte mangelfreie Ware wird nicht zurückgenommen, es sei denn, emco Klima hat mit dem Besteller eine individuelle Vereinbarung diesbezüglich getroffen.

5. Eigentumsvorbehalt

- 5.1 Die gelieferte Ware bleibt bis zur Erfüllung all unserer Forderungen (einschließlich sämtlicher Saldoforderungen aus Kontokorrent), die uns aus der Geschäftsbeziehung gegen den Besteller jetzt oder künftig zustehen, unser Eigentum (Vorbehaltsware).
- 5.2 Der Besteller ist gegen Abtretung der hieraus entstehenden Forderungen berechtigt, die Vorbehaltsware im ordnungsgemäßen Geschäftsverkehr zu veräußern, solange er nicht im Zahlungsverzug ist. Verpfändungen oder Sicherungsübereignungen sind unzulässig. Die aus dem Weiterverkauf oder einem sonstigen Rechtsgrund (z. B. Versicherungsfall, unerlaubte Handlung) hinsichtlich der Vorbehaltsware entstehenden Forderungen tritt der Besteller uns bereits jetzt sicherungshalber im vollem Umfange ab. Wird die Vorbehaltsware zusammen mit anderen uns nicht gehörenden Waren ohne oder nach Weiterverarbeitung bzw. Verbindung veräußert, gilt die Abtretung der Forderung aus der Veräußerung nur in Höhe des Wertes der Vorbehaltsware. Wir nehmen diese Abtretung an.
- 5.3 Auf Verlangen ist der Besteller verpflichtet, uns die Namen seiner Schuldner und die Höhe der Rechnungsforderungen mitzuteilen. Der Besteller ist verpflichtet, die unter Eigentumsvorbehalt stehenden Waren gegen Verlust und Beschädigungen zu versichern. Machen wir bei vertragswidrigem Verhalten des Bestellers unsere Rechte aus Eigentumsvorbehalt geltend, haben wir das Recht zum Betreten der Räume des Bestellers, um die Vorbehaltsware an uns nehmen zu können.
- 5.4 Wir verpflichten uns, die uns nach den vorstehenden Bestimmungen zustehenden Sicherheiten freizugeben, als der im Verwertungsfall realisierbare Wert dieser Sicherheiten die zu sichernde Forderung um mindestens 10 % übersteigt.

6. Gewährleistung und Haftung

- 6.1 Der Besteller ist verpflichtet auch verpackte Ware unverzüglich nach Erhalt auf erkennbare Mängel zu untersuchen und diese innerhalb von sieben Kalendertagen nach Erhalt der Ware und unter Angabe der Beanstandung in nachprüfbarer Weise schriftlich gegenüber emco Klima anzuzeigen. Nicht bei sorgfältiger Untersuchung erkennbare Mängel sind in derselben Art und Weise innerhalb derselben Frist ab Entdeckung gegenüber emco Klima anzuzeigen. Erkennbare Transportschäden sind bei Entgegennahme durch den Besteller bei einem Versendungskauf sofort gegenüber dem Frachtführer schriftlich anzuzeigen, andernfalls gegenüber emco Klima, wenn die Versendung auf Gefahr von emco Klima erfolgte.
- Gelan von ernto Rilma erloigte.

 6.2 Bei Vorliegen eines Mangels hat emco Klima das Recht der Wahl der Beseitigung des Mangels oder der Lieferung einer mangelfreien Sache. Eine Nacherfüllung durch uns ist erst dann fehlgeschlagen, wenn ein vorhandener Mangel auch nach dem zweiten Nacherfüllungsversuch noch nicht beseitigt ist. Die Rechte des Bestellers im Falle des Fehlschlagens, der Verweigerung und Unzumutbarkeit der Nacherfüllung bleiben unberührt.

- **6.3** Sachmängelansprüche des Bestellers verjähren in zwölf Monaten. Dies gilt nicht, soweit das Gesetz gem. § 438 Abs. 1 Nr. 2, 445 b Abs. 3, § 79 Abs. 1, § 634 a Abs. 1 BGB längere Fristen vorschreibt sowie in Fällen der Verletzung des Lebens, des Körpers und der Gesundheit, bei einer vorsätzlichen oder grob fahrlässigen Pflichtverletzung oder bei arglistigem Verschweigen eines Mangels. Die gesetzlichen Regelungen über Ablaufhemmung und Neubeginn von Fristen bleiben unberührt.
- 6.4 Die Kaufsache gilt bei einer unerheblichen Abweichung von der vereinbarten Beschaffenheit, insbesondere Farbe und Ausführung, bei natürlicher Nutzung oder bei Schäden, die nach Gefahrübergang in Folge fehlerhafter oder nachlässiger Behandlung, Wartung oder aufgrund besonderer äußerer Einflüsse entstehen, nicht als mangelhaft.
- **6.5** Wir haften stets nach den zwingenden Vorschriften des Produkthaftungsgesetzes, bei Schäden aus der Verletzung des Lebens, des Körpers oder der Gesundheit, die wir, unsere gesetzlichen Vertreter oder Erfüllungshilfen zu vertreten haben und für alle von uns sowie von unseren gesetzlichen Vertretern oder Erfüllungsgehilfen vorsätzlich oder grob fahrlässig verursachten Schäden.
- **6.6** Bei leichter Fahrlässigkeit haften wir außer in den Fällen nach Abs. 6.5 nur bei Verletzung wesentlicher Vertragspflichten. Unsere Haftung ist in diesem Fall bei Sach- und Vermögensschäden auf den vertragstypischen und vorhersehbaren Schaden beschränkt. Bei verspäteten und/oder Fehllieferungen haften wir außer den in Abs. 6.5 genannten Fällen nicht für Folgeschäden
- **6.7** Soweit wir Vorschläge über die Verwendungsoder Einsatzart unserer Produkte machen, handelt es sich nicht um Planungsleistungen unsererseits und wird eine Haftung, die über die Produktbeschreibung hinausgeht, ausgeschlossen.

7. Werkleistungen/Werklieferleistungen

Nur dann, wenn emco Klima mit der Lieferung und dem Einbau von emco Klima hergestellten Bauteilen, wie z.B. Deckenstrahlplatten, Bodenkanälen oder Kühldecken beauftragt worden ist, liegt ein Werkvertrag vor. In diesem Fall reduziert sich die Gewährleistungspflicht von emco Klima auf zwei Jahre, gerechnet ab Abnahme. Wegen unwesentlicher Mängel kann die Abnahme nicht verweigert werden.

In allen anderen Fällen, in denen emco Klima lediglich die Lieferung von herzustellenden beweglichen Bauoder Anlageteilen zum Gegenstand hat, findet Kaufrecht Anwendung unter Einbeziehung der oben aufgeführten AGB von emco Klima.

8. Erfüllungsort, Gerichtsstand und Schlussbestimmungen

- **8.1** Erfüllungsort für Lieferungen ist der Versandort, für Zahlungen der Geschäftssitz von emco Klima.
- 8.2 Ist der Besteller Kaufmann, juristische Person des öffentlichen Rechts oder öffentlich- rechtliches Sondervermögen, ist nach unserer Wahl Gerichtsstand für alle Streitigkeiten aus diesem Vertrag auch für Wechselund Scheckklagen unser Geschäftssitz oder der Sitz des Bestellers. Dasselbe gilt, wenn der Besteller keinen allgemeinen Gerichtsstand in Deutschlang hat oder der Wohnsitz oder gewöhnliche Aufenthalt zum Zeitpunkt der Klageerhebung nicht bekannt ist.
- **8.3** Für alle Verträge zwischen dem Besteller und uns gilt ausschließlich das deutsche Recht unter Ausschluss des UN-Kaufrechts.

emcoair - Kontakt

Grundlagen und Systemvorteile

Drallluftdurchlässe

emco Klima GmbH Friedrich-Ebert-Str. 128 – 130 49811 Lingen (Ems) **T** +49 591 7108-580

F +49 591 7108-7580

E klima@emco-klima.com

W emco-klima.com

Ihre zuständige Gebietsvertretung finden Sie auf www.emco-klima.com

Deckenluftdurchlässe

Schlitzluftdurchlässe

Notizen:	
	Rundrohrluft durchlässe
	Quellluft- durchlässe
	Industrieluft durchlässe
	Weitwurf- düsen
	Kombiluft- durchlässe
	Bodenluft- durchlässe
	Gitter
	Klappen und Regler
	AGBs, Kontakt

emco-klima.com

emco Klima GmbH Friedrich-Ebert-Str. 128 – 130 49811 Lingen (Ems)

T +49 5917108-580 F +49 5917108-7580 E klima@emco-klima.com

W emco-klima.com

